
PTcalc Manual

Kokichi Futatsugi

September 3, 2021

1 Overview

A CafeOBJ’s specification (i.e. a module) M contains equations and defines the
set of constructor models Mod(M) each element of that satisfies the equations.
PTcalc (Proof Tree Calculus) is a refined version of a CafeOBJ version of CITP
(Constructor-based Inductive Theorem Prover) and helps to prove a property
holds for any model in Mod(M). A property is described as a Boolean ground
term p with fresh constants that correspond to the parameters of the property.

If the term p is deduced to be equal to true with the M ’s equations (in
symbols M ⊢e p), any model of M satisfies p (in symbols M⊨p) by the soundness
of equational deduction (in symbols M ⊢e p ⇒ M⊨p). If the term p is reduced to
true by using the M ’s equations as reduction (rewriting) rules from left to right
(in symbols M ⊢r p), M ⊢e p holds by the soundness of reduction with respect to
equational deduction (in symbols M ⊢r p ⇒ M ⊢e p). Let M ⊢c p denote that
the CafeOBJ reduction command “red in M : p .” returns true. CafeOBJ’s
reduction is an implementation of M ⊢r p and we get M ⊢c p ⇒ M ⊢r p. Because
implication (⇒) is transitive the following proof rule is obtained.

(1) M ⊢c p ⇒ M⊨p

Usually M ⊢c p is difficult to prove directly, and we need to find case splitting
equations e1, · · · , en such that at least one of them holds for any model in
Mod(M). That is, the equations cover all the possibilities (i.e. are exhaustive).
Let M+ei be the module gotten by adding ei to M , then each model in Mod(M)
is a model of M+ej for some j ∈{1, 2, · · · , n}, and we get the following proof
rule of case split with exhaustive equations.

(2) (M+e1⊨p ∧M+e2⊨p ∧ · · · ∧M+en⊨p) ⇒ M⊨p

M+ei ⊢c p would be still difficult to prove and (2) is applied repeatedly.
The repeated applications of (2) generate proof trees successively. Each of
the generated proof trees has the root node M⊨p and each of other nodes
is of the form M+ei1 ···+eim

⊨p (m∈{1, 2, · · · }) that is generated as a child
node of M+ei1 ···+eim−1

⊨p by applying (2). A leaf node (i.e. a node without

1

child nodes) M+el1 ···+elk
⊨p (k∈{0, 1, · · · }) of a proof tree is called effective if

M+el1 ···+elk
⊢c p holds. A proof tree is called effective if all of whose leaf nodes

are effective. PTcalc proves M⊨p by constructing an effective proof tree whose
root node is M⊨p.

2 PTcalc Commands

Each of the PTcalc commands starts with the keyword :goal, :def, :apply,
:csp, :ctf, :init, :red, :show, :describe, :select, or :set. The head
character : distinguishes them from ordinary CafeOBJ commands.

In PTcalc, a node in a proof tree is a special CafeOBJ module and called a
goal. Each goal gl has a name like root or 1-2-3 (i.e. 3rd child of 2nd child of
1st child of root), and consists of the following five items.

(1) The next target (or default) goal Boolean tag NTG(gl) that indicates
a goal where a PTcalc command is executed. (NTG(gl) = true) holds for
at most one goal gl in a proof tree.

(2) The context module CTM(gl) that is a CafeOBJ module and corresponts
to M of M⊨p. The goal gl inherits (imports) all the contents of CTM(gl).

(3) The set of introduced axioms (i.e. assumptions) INA(gl) that corre-
sponds to +ei1 · · ·+ eim of M+ei1 ···+eim

⊨p.
(4) The set of sentences (or equations) to be proved STP(gl) that cor-

responts to p of M+ei1 ···+eim
⊨p.

(5) The discharged Boolean tag DCD(gl) that indicates whether gl is already
discharged (i.e. proved).

(CTM(gl)∪INA(gl))⊨STP(gl) corresponds to M+ei1 ···+eim
⊨p, where (CTM(gl)∪

INA(gl)) is understood as the module gotten by adding all the equations in
INA(gl) to CTM(gl), and STP(gl) is understood as the conjunction of its elements.
gl sometimes means (CTM(gl)∪INA(gl)).

The effects of PTcalc command executions are defined in the following sub-
sections where a succession of commands ”:cmnd1 :cmnd2” means executing
:cmnd2 after executing :cmnd1.

2.1 :goal

For n∈{1, 2, · · · } unconditional equations eqi (i∈{1, 2, · · · , n}) a :goal com-
mand

:goal{eql eq2 · · · eqn}
initiates a proof by generating a proof tree that consists only of the goal root
as follows.

(1) NTG(root) = true.
(2) CTM(root) is the current module of CafeOBJ.
(3) INA(root) = {} (i.e. the empty set).
(4) STP(root) = {eql, eq2, · · · , eqn}.
(5) DCD(root) = false.

2

A CafeOBJ module M becomes the current module by executing a CafeOBJ
command “select M .”. If some contents (i.e. sorts, operators, equations) are
declared after a CafeOBJ command “open M .”, the opened tentative module
% obtained by adding the contents to M becomes the current module.

2.2 :def

A :def command gives a name to a :csp command, a :init command, or a
sequence (· · ·) of command names as follows.

:def csid = :csp · · ·
:def inid = :init · · ·
:def sqid = (id1 id2 · · · idn) (n∈{1, 2, · · · })

Each idi (i∈{1, 2, · · · , n}) is the built-in command name rd- or rd, or the
already defined :csp command name csid, :init command name inid, or (· · ·)
command name sqid.

2.3 :apply(csid) and :csp{· · · } and :ctf{eq l = r .}
Let (a) tg be a goal such that (NTG(tg) = true) and (b) csid be the name of a
:csp command defined as follows with n∈{1, 2, · · · } equations eqi (i∈{1, 2, · · · ,
n}).

:def csid = :csp{eq1 eq2 · · · eqn}
Then executing the command
:apply(csid)

generates n sub-goals (i.e. child goals) tg-1, tg-2, · · · , tg-n of tg as follows.
(1:1) Change NTG(tg) from true to false.
(1:2) NTG(tg-1) = true.
(1:3) NTG(tg-i) = false (i∈{2, · · · , n}).
(2) CTM(tg-i) = CTM(tg) (i∈{1, 2, · · · , n}).
(3) INA(tg-i) = INA(tg)∪{eqi} (i∈{1, 2, · · · , n}).
(4) STP(tg-i) = STP(tg) (i∈{1, 2, · · · , n}).
(5) DCD(tg-i) = false (i∈{1, 2, · · · , n}).
Executing the :csp command
:csp{eq1 eq2 · · · eqn}

without giving a name has the same effect as defined above.
:ctf{eq l = r .} is the abbreviation of
:csp{eq l = r . eq (l = r) = false .}.

2.4 :apply(inid) and “:init as eqid [lb] by { sbst }”
Let (a) tg be a goal such that (NTG(tg) = true), (b) lb be a label of an equation
in tg (i.e. in CTM(tg)∪INA(tg)) with a set of labels lbset that includes lb, (c)
inid be the name of a :init command defined as follows with a new equation
name eqid and a substitution sbst, where sbst is a sequence of n∈{1, 2, · · · }
variable-term pairs ”vi <- ti ;” (i∈{1, 2, · · · , n}).

:def inid = :init as eqid [lb] by { sbst }

3

“as eqid ” can be omitted, [lb] can be replaced with (eq) by writing eq di-
rectly, and “by { sbst }” can be omitted by replacing it with “.”. Let “ceq l =

r if c .” be the equation with the label lb or eq (ceq stands for conditional
equation). An unconditional equation is understood to have the condition true,
i.e., c = true.

Then executing the command
:apply(inid)

generates a sub-goal tg-1 of the goal tg as follows, where l̂, r̂, ĉ are normal
forms of sbst(l), sbst(r), sbst(c) in the goal tg. If “by { sbst }” is omitted, sbst is
understood to be the identity function. The equation “ceq l = r if c .” itself
is not used to get the normal forms if it is declared with (...) (i.e. it is eq).
The equation is, however, used if it is the equation with the label lb and without
:nonexec attribute, hence the :nonexec attribute should be declared if the label
lb is supposed to be used in a :init command. Note that, if the condition c is
true, using “ceq l = r if c .” for getting l̂, r̂, ĉ generates a trivial equation
“ceq r̂ = r̂ if true .” i.e., “eq r̂ = r̂ .” (see 3:1 below).

(1:1) Change NTG(tg) from true to false.
(1:2) NTG(tg-1) = true.
(2) CTM(tg-1) = CTM(tg).
(3:0) INA(tg-1) = INA(tg).
(4) STP(tg-1) = STP(tg).
(5) DCD(tg-1) = false.

(3:1) Add ”ceq[eqid :nonexec]: l̂ = r̂ if ĉ .” to INA(tg-1)

if (ĉ= false)∨(l̂ = r̂).

(3:2) Add ”eq[eqid]: r̂ = l̂ .” to INA(tg-1)

if (ĉ= true)∧¬(l̂ = r̂)∧((l̂ = true)∨(l̂ = false)).

(3:3) Add ”eq[eqid]: l̂ = r̂ .” to INA(tg-1)

if (ĉ= true)∧¬(l̂ = r̂)∧¬((l̂ = true)∨(l̂ = false)).

(3:4) Add ”ceq[eqid]: r̂ = l̂ if ĉ .” to INA(tg-1)

if ¬((ĉ= true)∨(ĉ= false))∧¬(l̂ = r̂)∧
((l̂ = true)∨(l̂ = false)).

(3:5) Add ”ceq[eqid]: l̂ = r̂ if ĉ .” to INA(tg-1)

if ¬((ĉ= true)∨(ĉ= false))∧¬(l̂ = r̂)∧
¬((l̂ = true)∨(l̂ = false)).

Executing the :init command
:init as eqid [lb] by { sbst }

without giving a name has the same effect as defined above.

2.5 :apply(rd-)

Let (a) tg be the goal such that (NTG(tg) = true) and (b) STP(tg) = {eq1,
eq2, · · · , eqn} (n ∈ {1, 2, · · · }) with li and ri being the left hand and the right
hand of eqi (i ∈ {1, · · · , n}). Let a goal gl-s be a sibling goal of a goal gl if gl-s
and gl are child goals of the same goal.

4

Then executing the command
:apply(rd-)

changes STP(tg), DCD(), NTG() with the following procedure. If INA(tg) con-
tains executable (i.e. not having :nonexec attribute) “eq true = false .” or
“eq false = true .”, the contradictory equation has been generated with the
equations in CTM(tg)∪INA(tg) in the execution of :init command (see 2.4) and
the goal tg can be discharged.

IF (INA(tg) does not contain executable
“eq true = false .” or “eq false = true .”)

THEN
[For i ∈ {1, · · · , n} let êqi be the normal form of (li = ri) in tg] ;
[(4) For i ∈ {1, · · · , n} erase eqi from STP(tg) if (êqi = true)] ;
IF not(STP(tg) = {}) THEN STOP FI

FI ;
[(5:1) Change DCD(tg) to true] ;
[(1:1) Change NTG(tg) to false] ;
[Let tmp be tg] ;
WHILE ((DCD(tmp-s) = true) for any sibling goal tmp-s of tmp)
DO

[(5:2) Change DCD(tmp-p) to true for the parent goal tmp-p of tmp] ;
[Let tmp be tmp-p]

OD ;
[(1:2) Change NTG(lf) to true for the goal lf that is the first leaf goal

in the lexicographic order such that (DCD(lf) = false)
if such goal lf exists]

2.6 :apply(rd)

Let (a) tg be the goal such that (NTG(tg) = true) and (b) STP(tg) = {eq1,
eq2, · · · , eqn} (n ∈ {1, 2, · · · }) with li and ri being the left hand and the right
hand of eqi (i ∈ {1, · · · , n}).

Then executing the command
:apply(rd)

generates a sub-goal tg-1 of the goal tg and changes STP(tg-1), DCD(), NTG()
as follows.

(1:1) Change NTG(tg) from true to false.
(1:2) NTG(tg-1) = true.
(2) CTM(tg-1) = CTM(tg).
(3) INA(tg-1) = INA(tg).
(4:1) STP(tg-1) = STP(tg).
(5:1) DCD(tg-1) = false.

IF (INA(tg-1) does not contain executable
“eq true = false .” or “eq false = true .”)

THEN
[For i ∈ {1, · · · , n} let l̂i, r̂i, êqi be the normal forms

of li, ri, (li = ri) in tg-1] ;
[(4:2) For each eqi∈ STP(tg-1) (i ∈ {1, · · · , n})

if (êqi = true) then erase eqi
else replace eqi with ”eq l̂i = r̂i .” fi] ;

5

IF not(STP(tg-1) = {}) THEN STOP FI
FI ;
[(5:2) Change DCD(tg-1) to true] ;
[(1:3) Change NTG(tg-1) to false] ;
[Let tmp be tg-1] ;
WHILE ((DCD(tmp-s) = true) for any sibling goal tmp-s of tmp)
DO

[(5:3) Change DCD(tmp-p) to true for the parent goal tmp-p of tmp] ;
[Let tmp be tmp-p]

OD ;
[(1:4) Change NTG(lf) to true for the goal lf that is the first leaf goal

in the lexicographic order such that (DCD(lf) = false)
if such goal lf exists]

2.7 :select

Let gl and tg be goals such that (NTG(tg) = true). The command
:select gl .

changes NTG(tg) to false and NTG(gl) to true.

2.8 :apply(id1 id2 · · · idn)
Let tg be a goal such that (NTG(tg) = true), and let each idi (i ∈ {1, 2, · · · n})
be the built-in command name rd- or rd, or the defined name of a :csp· · · ,
:init· · · , or (· · ·) command (see 2.2). Then the effect of the execution of

:apply(id1 id2 · · · idn)
on NTG(), CTM(), INA(), STP(), DCD() is defined as follows.

2.8.1 id1 = :csp· · ·

Let id1 be the name of a :csp command defined as
:def id1 = :csp{eq1 eq2 · · · eqn} (n ∈ {1, 2, · · · })

then
:apply(id1 id2 · · · idn) =

:apply(id1)
:select tg-1 . :apply(id2 · · · idn)
:select tg-2 . :apply(id2 · · · idn)

· · ·
:select tg-n . :apply(id2 · · · idn) .

2.8.2 id1 = :init· · ·

Let id1 be the name of a :init command defined as
:def id1 = :init· · ·

then
:apply(id1 id2 · · · idn) = :apply(id1) :apply(id2 · · · idn) .

6

2.8.3 id1 = (· · ·)

Let id1 be the name of a (· · ·) command defined as
:def id1 = (ids1 ids2 · · · idsm) (m ∈ {1, 2, · · · })

then
:apply(id1 id2 · · · idn) = :apply(ids1 ids2 · · · idsm id2 · · · idn) .

2.8.4 id1 = rd- or rd

Let (a) tg be the goal such that (NTG(tg) = true) and (b) id1 be rd- or rd.
If DCD(tg) is true after executing :apply(id1) then

:apply(id1 id2 · · · idn) = :apply(id1) .
If DCD(tg) is not true after executing :apply(id1) then

:apply(id1 id2 · · · idn) = :apply(id1) :apply(id2 · · · idn) .

2.9 :show and :describe

The :show and :describe commands show the status of the current proof tree.
:show can be abbreviated as :sh, and :describe can be abbreviated as :desc.

▷ :show proof

shows all the names of goals in the current proof tree with NTG () and
DCD().

▷ :show unproved

shows CTM(), INA(), STP(), DCD() for all the leaf goals in the current
proof tree such that (DCD() = false).

▷ :show discharged

shows the discharged sentence with its context module.

▷ :show goal

shows CTM(gl), INA(gl), STP(gl), DCD(gl) for the goal gl such that (NTG(gl)
= true).

▷ :show goal gl
shows CTM(gl), INA(gl), STP(gl), DCD(gl) for the goal gl.

▷ :show def

shows all the command names defined with :def commands.

▷ :describe proof

shows CTM(), INA(), STP(), DCD() for all the goals in the current proof
tree.

7

2.10 :red

▷ :red trm .

shows the normal form of the term trm in the goal tg such that (NTG(tg)
= true).

▷ :red in gl : trm .

shows the normal form of the term trm in the goal gl.

2.11 :set

▷ :set(verbose,on)

sets the PTcalc flag verbose on, and makes outputs from PTcalc more
detailed.

▷ :set(verbose,off)

sets the PTcalc flag verbose off.

▷ :set(verbose,show)

shows the value of the PTcalc flag verbose.

8

	Overview
	PTcalc Commands
	:goal
	:def
	:apply(csid) and :csp{@let@token } and :ctf{eq l = r .}
	:apply(inid) and ``:init as eqid [lb] by {sbst}''
	:apply(rd-)
	:apply(rd)
	:select
	:apply(id1id2@let@token idn)
	id1 = :csp@let@token
	id1 = :init@let@token
	id1 = (@let@token)
	id1 = rd- or rd

	:show and :describe
	:red
	:set

