
CafeOBJ Reference Manual

Toshimi Sawada, Kokichi Futatsugi, Norbert Preining

2015-12-25 (v1.5.5)

ii

Contents

Contents i

1 Introduction 1

1.1 Background of CafeOBJ . 1

2 Overview of the system 3

2.1 Sorts . 3

2.2 Imports . 4

2.3 Variables and Operators . 4

2.4 Equations (or Axioms) . 5

3 CloudSync 7

3.1 Protocol . 7

3.2 Specification . 7

3.3 Verification . 11

4 Gory Details 17

4.1 Ctrl-D . 17

4.2 ! <command> . 17

4.3 #define <symbol> := <term> . 17

4.4 **, **> . 17

4.5 --, --> . 17

4.6 . 17

4.7 = . 18

4.8 =(n)=>, =(n,m)=>, =()=> . 18

4.9 =*= . 18

4.10 =/= . 18

4.11 == . 18

4.12 ==> . 18

4.13 ? [<term>] . 18

4.14 ?apropos <term> [<term> ...] . 19

4.15 ?com [<term>] . 19

ii CONTENTS

4.16 [. 19

4.17 accept =*= proof switch . 19

4.18 all axioms switch . 20

4.19 always memo switch . 20

4.20 :apply (<tactic> ...) [to <goal-name>] 20

4.21 apply <action> [<subst>] <range> <selection> 20

4.22 :auto . 21

4.23 auto context switch . 21

4.24 autoload <module-name> <file-name> 22

4.25 ax [<label-exp>] <term> = <term> 22

4.26 axioms { <decls> } . 22

4.27 :backward equation|rule . 22

4.28 bax [<label-exp>] <term> = <term> 22

4.29 bceq [<label-exp>] <term> = <term> if <boolterm> 22

4.30 bcrule [<label-exp>] <term> => <term> if <term> 22

4.31 bctrans [<label-exp>] <term> => <term> if <bool> 23

4.32 beq [<label-exp>] <term> = <term> 23

4.33 bgoal <term> . 23

4.34 {bguess | :bguess} {imply|and|or} [with <predicate name>] . 23

4.35 binspect [in <module-name> :] <boolean-term> 23

4.36 :binspect [in <goal-name> :] <boolean-term> 23

4.37 bop <op-spec> : <sorts> -> <sort> 24

4.38 bpred <op-spec> : <sorts> . 24

4.39 breduce [in <mod-exp> :] <term> 24

4.40 {bresolve | :bresolve} [<limit>] [all] 24

4.41 brule [<label-exp>] <term> => <term> 25

4.42 {bshow | :bshow} [{ tree | grind }] 25

4.43 bsort . 25

4.44 btrans [<label-exp>] <term> => <term> 26

4.45 cbred [in <mod-exp> :] <term> . 26

4.46 cd <dirname> . 26

4.47 ceq [<label-exp>] <term> = <term> if <boolterm> 26

4.48 check <options> . 26

4.49 check <something> switch . 27

4.50 choose <selection> . 27

4.51 CITP . 27

4.52 clause <term> . 27

4.53 clean memo . 27

4.54 clean memo switch . 27

4.55 close . 28

4.56 commands . 28

CONTENTS iii

4.57 comments . 28

4.58 cond limit switch . 28

4.59 cont . 28

4.60 :cp { "[" <label> "]" | "(" <sentence> . ")" } >< { "[" <la-

bel> "]" | "(" <sentence> .")" } 28

4.61 crule [<label-exp>] <term> => <term> if <term> 29

4.62 :csp { eq [<label-exp>] <term> = <term>} 29

4.63 :csp- { eq [<label-exp>] <term> = <term>} 29

4.64 :ctf { eq [<label-exp>] <term> = <term> .} 29

4.65 :ctf- { eq [<label-exp>] <term> = <term> .} 29

4.66 ctrans [<label-exp>] <term> => <term> if <term> 29

4.67 db reset . 30

4.68 :def <symbol> = { <ctf> | <csp>} 30

4.69 demod . 30

4.70 :describe proof . 30

4.71 describe <something> . 31

4.72 dirs . 31

4.73 dribble . 31

4.74 eof . 31

4.75 eq [<label-exp>] <term> = <term> 31

4.76 :equation . 32

4.77 exec limit switch . 32

4.78 exec trace switch . 32

4.79 exec! [in <mod-exp> :] <term> 33

4.80 execute [in <mod-exp> :] <term> 33

4.81 extending (<modexp>) . 33

4.82 find . 33

4.83 find all rules switch . 33

4.84 flag(<name>, { on | off }) . 33

4.85 full reset . 33

4.86 gendoc <pathname> . 34

4.87 :goal { <sentence> } . 34

4.88 goal <term> . 34

4.89 :imp "[" <label> "]" by "{" <variable> <- <term>; ..."}" . . . 34

4.90 imports { <import-decl> } . 34

4.91 include BOOL switch . 34

4.92 include RWL switch . 35

4.93 including (<modexp>) . 35

4.94 :ind on <variable> ... 35

4.95 :init { "[" <label> "]" | "(" <sentence> "")} by "{" <vari-

able> <- <term>; ... "}" . 35

iv CONTENTS

4.96 input <pathname> . 35

4.97 inspect <term> . 35

4.98 instantiation of parameterized modules 36

4.99 :is . 37

4.100 let <identifier> = <term> . 37

4.101 lex (<op>, ..., <op>) . 37

4.102 libpath switch . 37

4.103 lisp . 37

4.104 lispq . 38

4.105 list { axiom | sos | usable | flag | param | option | demod } 38

4.106 look up <something> . 38

4.107 ls <pathname> . 38

4.108 make <mod_name> (<mod_exp>) . 38

4.109 match <term_spec> to <pattern> . 39

4.110 memo switch . 39

4.111 [sys:]module[!|*] <modname> [(<params>)] [<princi-

pal_sort_spec>] { mod_elements ... } 39

4.112 module expression . 40

4.113 names <mod-exp> . 40

4.114 no autoload <module-name> . 40

4.115 :normalize { on | off} . 40

4.116 on-the-fly declarations . 41

4.117 op <op-spec> : <sorts> -> <sort> { <attribute-list> } 41

4.118 open <mod_exp> . 42

4.119 operator attributes . 42

4.120 operator precedence . 43

4.121 option { reset | = <name> } . 43

4.122 param(<name>, <value>) . 44

4.123 parameterized module . 44

4.124 parse [in <mod-exp> :] <term> 44

4.125 parse normalize switch . 44

4.126 popd . 45

4.127 pred <op-spec> : <sorts> . 45

4.128 prelude <file> . 45

4.129 print depth switch . 45

4.130 print mode switch . 45

4.131 print trs switch . 45

4.132 protect <module-name> . 45

4.133 protecting (<modexp>) . 46

4.134 provide <feature> . 46

4.135 pushd <directory> . 46

CONTENTS v

4.136 pvar <var-name> : <sort-name> . 46

4.137 pwd . 46

4.138 qualified sort/operator/parameter . 46

4.139 qualified term . 47

4.140 quiet switch . 47

4.141 quit . 47

4.142 { :red | :exec | :bred } [in <goal-name> :] <term> 47

4.143 reduce [in <mod-exp> :] <term> 47

4.144 reduce conditions switch . 48

4.145 regularize <mod-name> . 48

4.146 regularize signature switch . 48

4.147 require <feature> [<pathname>] 48

4.148 reset . 49

4.149 resolve {. | <file-path> } . 49

4.150 restore <pathname> . 49

4.151 rewrite limit switch . 49

4.152 :roll back . 49

4.153 :rule . 49

4.154 rule [<label-exp>] <term> => <term> 50

4.155 save <pathname> . 50

4.156 save-option <name> . 50

4.157 save-system <pathname> . 50

4.158 scase (<term>) in (<mod-exp>) as <name> { <decl> ..} : <term>

. 50

4.159 search predicates . 50

4.160 :select <goal-name> . 51

4.161 select <mod_exp> . 51

4.162 :set(<name>, { on | off | show }) 52

4.163 set <name> [option] <value> . 52

4.164 :show goal|unproved|proof . 52

4.165 show <something> . 52

4.166 show mode switch . 53

4.167 sigmatch (<mod-exp>) to (<mod-exp>) 53

4.168 signature { <sig-decl> } . 53

4.169 sort declaration . 53

4.170 sos { = | + | - } { <clause> , ... } 54

4.171 :spoiler { on | off} . 54

4.172 start <term> . 54

4.173 statistics switch . 54

4.174 step switch . 55

4.175 stop . 55

vi CONTENTS

4.176 stop pattern switch . 55

4.177 switches . 56

4.178 trace [whole] switch . 56

4.179 trans [<label-exp>] <term> => <term> 56

4.180 unprotect <module-name> . 56

4.181 using (<modexp>) . 57

4.182 var <var-name> : <sort-name> . 57

4.183 :verbose { on | off } . 57

4.184 verbose switch . 57

4.185 version . 57

4.186 view <name> from <modname> to <modname> { <viewelems> } . . . 57

Bibliography 59

1Introduction

This manual introduces the language CafeOBJ. Is is a reference manual with the aim to docu-

ment the current status of the language, and not targeting at an exhaustive presentation of

the mathematical and logical background. Still, the next section will give a short summary

of the underlying formal approach and carry references for those in search for details.

The manual is structured into three parts. The first one being this introduction, the second

one being the presentation of basic concepts of CafeOBJ by providing a simple protocol

which will get specified and verified. Although the second part tries to give a view onto the

core features and their usage, it should not be considered a course in CafeOBJ, and cannot

replace a proper introduction to the language. The CafeOBJ distribution also includes a

user manual. This user manual is slightly outdated with respect to the current status of the

language, but is targeting those without and prior knowledge of CafeOBJ.

Finally, the last part consists of explanations of all current language elements in alphabetic

order. This includes several higher level concepts, as well as heavy cross-referencing.

While we hope that this manual and the introductory part helps beginners to start program-

ming in CafeOBJ, the main target are those who already have acquired a certain level of

fluency, but are in need for a reference of the language.

1.1 Background of CafeOBJ

CafeOBJ is an algebraic specification and verification language. Although it can be employed

for all kind of programming (since it is Turing complete), the main target are algebraic speci-

fication of software systems. This includes programs, protocols, and all kind of interaction

specifications. In addition to being a specification language, it is also a verification lan-

guage, that is, a specification given in CafeOBJ can be verified within the same language

environment.

Specification here means that we are trying to describe the inner workings of a software

system in a mathematical way, while verification means that we give a mathematical proof

of certain properties. A specification is a text, usually of formal syntax. It denotes an

algebraic system constructed out of sorts (or data types) and sorted (or typed) operators.

The system is characterize by the axioms in the specification. An axiom was traditionally

2 CHAPTER 1. INTRODUCTION

a plain equation (“essentially algebraic”), but is now construed much more broadly. For

example, CafeOBJ accommodates conditional equations, directed transitions, and (limited)

use of disequality.

CafeOBJ is based on three extensions to the basic many-sorted equational logic:

Order-sorted logic In addition to having different sorts (similar to types in other program-

ming languages), these sorts can be ordered, or in other words, one sort can be a

subset of another sort: Take for example the number stack: CafeOBJ allows for the

provision of natural numbers, which are part of the rational numbers, which are part

of the real numbers. This concept allows for operator inheritance and overloading.

Behavioral logic Algebraic modeling is often based on constructors, i.e., all terms under

discussion are built up from given operations, and equality can be decided via an

equational theory. While being very successful, it is often necessary to model infinite

objects (like data streams), which cannot be achieved in this way. CafeOBJ includes

behavioral logic and the respective hidden sorts as methodology to model infinite

objects which identity is defined via behavior instead of the equational theory.

Rewriting logic Aim of a algebraic specification and verification is to give a formal proof of

correctness. CafeOBJ contains order-sorted term rewriting as operational semantics,

which allows for execution of proof scores, CafeOBJ code which forms a proof of the

required properties.

There is a wide range of literature on all of these subjects for the interested reader in search

for theoretical background. We refer the reader to [1] as a starting point.

2Overview of the system

Let us start with a simple definition of a module, which are the basic building blocks of any

CafeOBJ program:

mod NATPAIR {

pr(NAT)

[Pair]

var P : Pair

op <_,_> : Nat Nat -> Pair {constr}

op fst : Pair -> Nat

op snd : Pair -> Nat

eq fst(< A:Nat , B:Nat >) = A .

eq snd(< A:Nat , B:Nat >) = B .

}

This example already presents most of the core concepts of CafeOBJ:

• modules as the basic building blocks

• import of other modules pr(NAT)

• sorts [Pair]

• operator signature and equations

Let us start with sorts, as they are the fundamental types.

2.1 Sorts

Most programming languages allow for different sorts, or types of objects. In this respect

CafeOBJ is not different and allows to have arbitrary sorts. In addition, these sorts can be

ordered, more specific one sort can be declared a sub-sort of another. In the above example

[Pair]

4 CHAPTER 2. OVERVIEW OF THE SYSTEM

a new sort called Pair is introduced. This is a completely new sort and is in no sub-sort

relation to any other sort. This is a very common case, and reflects the different types of

objects in other programming languages.

In case one wants to introduce ordering in the sorts, the order can be expressed together

with the definition of the sort, as in:

[Nat < Set]

which would introduce a new sort Set and declares it as supersort of the (builtin) sort Nat.

For more details concerning sorts, see sort declaration.

2.2 Imports

CafeOBJ allows for importing and reusing of already defined modules:

pr(NAT)

for example pulls in the natural numbers (in a very minimal implementation). There are

several modes of pulling in other modules, differing in the way the (semantic) models of

the included module are treated.

After a statement of import, the sorts, variables, and operators of the imported modules

can be used.

For more details see protecting, extending, using, including

2.3 Variables and Operators

While sorts define data types, variables hold objects of a specific type, and operators de-

fine functionality. For each variable its sort has to be declared, and for each operator the

signature, i.e., the sorts of the input data and the sort of the output, has to be given.

var P : Pair

op fst : Pair -> Nat

This example declares a variable P of type pair, and an operator fst which maps the sort

Pair to the sort Nat, or in other words, a function that maps pairs of natural numbers to

natural numbers.

We have seen already a different way to specify operators, namely

2.4. EQUATIONS (OR AXIOMS) 5

op <_,_> : Nat Nat -> Pair {constr}

which introduces an infix operator. CafeOBJ is very flexible and allows to freely specify the

syntax. In an operator declaration as the above, the underscores _ represent arguments to

the operator. That also means that the number of underscores must match the number of

sorts given before the ->. After the above declaration CafeOBJ will be able to parse terms

like < 3 , 4 > and correctly type them as pair.

For further details, see var, op.

2.4 Equations (or Axioms)

Using sorts, variables, and operators we have specified the terms that we want to speak

about. In the following equations, or sometimes called axioms, will equate different terms.

Equating here is meant in the algebraic sense, but also in the term-rewriting sense, as equa-

tions form the basis of rewrite rules which provide CafeOBJ with the executable semantics:

eq fst(< A:Nat , B:Nat >) = A .

eq snd(< A:Nat , B:Nat >) = B .

As soon as an operator like fst has been declared, we can give equations. In this case we

define fst of a pair to return the first element.

For further details see eq.

In the following chapter we will include the specification of a protocol with the full code,

explaining some concepts on the way.

3CloudSync

In the following we will model a very simple protocol for cloud synchronization of a set of

PCs. The full code of the actual specification, as well as parts of the verification proof score

will be included and discussed.

Besides giving an example of a specification and verification, we also try to explain several

of the most important concepts in CafeOBJ using rather simple examples.

3.1 Protocol

One cloud computer and arbitrary many PCs have one value each that they want to keep in

sync. This value is a natural number, and higher values mean more recent (like SVN revision

numbers).

The Cloud can be in two states, idle and busy, while the PCs can be on of the following three

states: idle, gotvalue, updated. The Cloud as well as all PCs are initially in the idle state.

When a PC connects to the cloud, three things happen:

1. the cloud changes into busy state

2. the PC reads the value of the cloud and saves it in a temporary location

3. the PC changes into gotvalue state

In the gotvalue state the PC compares his own value against the value it got from the cloud,

and updates accordingly (changes either the cloud or the own value to the larger one). After

this the PC changes into the updated state.

From the update state both the Cloud and the PC return into the idle state.

TODO include a graphic that shows this TODO

3.2 Specification

We will now go through the full specification with explanations of some of the points sur-

facing. We are starting with two modules that specify the possible states the cloud and the

PCs can be in:

8 CHAPTER 3. CLOUDSYNC

mod! CLLABEL {

[ClLabelLt < ClLabel]

ops idlecl busy : -> ClLabelLt {constr} .

eq (L1:ClLabelLt = L2:ClLabelLt) = (L1 == L2) .

}

mod! PCLABEL {

[PcLabelLt < PcLabel]

ops idlepc gotvalue updated : -> PcLabelLt {constr} .

eq (L1:PcLabelLt = L2:PcLabelLt) = (L1 == L2) .

}

Both modules define two new sorts each, the actual label, and literals for the labels. One

can see that we declare the signatures of the literal labels with the ops keyword, which

introduces several operators of the same signature at the same time.

The last equation in each models provides a definition of equality by using the behavioral

equality ==. The predicate == is the equivalence predicate defined via reduction. Thus, the

two axioms given above state that two literals for labels are the same if they are syntactically

the same, since they cannot be rewritten anymore.

Furthermore, note that we choose different names for the idle state of the PCs and the cloud,

to have easy separation.

The next module introduces a parametrized pair module. Parametrizing modules is a very

powerful construction, and common in object oriented programming languages. In princi-

ple we leave open what are the actual components of the pairs, and only specify the opera-

tional behavior on a single pair.

In this and the next example of the multi-set, there are no additional requirements on the

sorts that can be used to instantiate a pair (or multi-set). In a more general setting the

argument after the double colon :: refers to a sort, and an instantiation must be adequate

for this sort (details require deeper understanding of homomorphism).

mod! PAIR(X :: TRIV,Y :: TRIV) {

[Pair]

op <_,_> : Elt.X Elt.Y -> Pair {constr}

op fst : Pair -> Elt.X

op snd : Pair -> Elt.Y

eq fst(< A:Elt.X,B:Elt.Y >) = A .

eq snd(< A:Elt.X,B:Elt.Y >) = B .

}

3.2. SPECIFICATION 9

The next module is also parametrized, axiomatizing the concept of multi-set where a certain

element can appear multiple times in the multi-set. We want to use this module to present

another feature, namely the option to specify additional properties of some operators. In

this case we are specifying that the constructor for sets is associative assoc, commutative

comm, and has as identity the empty set.

While it is easily possible to add associativity and commutativity as axioms directly, this is

not advisable, especially for commutativity. Assume adding the simple equation eq A * B

= B * A .. This defines a rewrite rule from left to right. But since A and B are variables

the can be instantiated with arbitrary subterms, and one would end up with an infinite

rewriting.

mod MULTISET(X :: TRIV) {

[Elt.X < MultiSet]

op empty : -> MultiSet {constr} .

-- associative and commutative set constructor with identity empty

op (_ _) : MultiSet MultiSet -> MultiSet { constr assoc comm id: empty }

}

With all this set up we can defined the cloud state as a pair of a natural number, and a state.

Here we see how a parametrized module is instantiated. The details of the renaming for

the second element are a bit involved, but thinking about renaming of sorts and operators

to match the ones given is the best idea.

Having this in mind we see that when we put the CLLABEL into the second part of the pair,

we tell the system that it should use the ClLabel sort for the instantiation of the Elt sort,

and not the ClLabelLt sort.

Furthermore, after the instantiation we rename the final outcome again. In this case we

rename the Pair to ClState, and the operators to their cousins with extension in the name.

mod! CLSTATE {

pr(PAIR(NAT, CLLABEL{sort Elt -> ClLabel})*

{sort Pair -> ClState, op fst -> fst.clstate, op snd -> snd.clstate })

}

The PC state is now very similar, only that we have to have a triple (3TUPLE is a builtin

predicate of CafeOBJ), since we need one additional place for the temporary value. In the

same way as above we rename the Elt to PcLabel and the outcome back to PcState.

mod! PCSTATE {

pr(3TUPLE(NAT, NAT, PCLABEL{sort Elt -> PcLabel})*{sort 3Tuple -> PcState})

}

10 CHAPTER 3. CLOUDSYNC

As we will have an arbitrary set of PCs, we define the multi-set of all PC states, by instatiating

the multi-set from above with the just defined PcState sort, and rename the result to

PcStates.

mod! PCSTATES {

pr(MULTISET(PCSTATE{sort Elt -> PcState})*{sort MultiSet -> PcStates})

}

Finally, the state of the whole system is declared as a pair of the cloud state and the pc

states.

mod! STATE {

pr(PAIR(CLSTATE{sort Elt -> ClState},

PCSTATES{sort Elt -> PcStates})*{sort Pair -> State})

}

The final part is to specify transitions. We have described the protocol by a state machine,

and the following transitions will model the transitions in this machine.

The first transition is the initialization of the synchronization by reading the cloud value,

saving it into the local register, and both partners go into busy state.

Note that, since we have declared multi-set as commutative and associative, we can assume

that the first element of the multi-set is actually the one we are acting on.

Transitions are different from axioms in the sense that the do not state that two terms are

the same, but only that one terms can change into another.

mod! GETVALUE { pr(STATE)

trans[getvalue]:

< < ClVal:Nat , idlecl > ,

(<< PcVal:Nat ; OldClVal:Nat ; idlepc >> S:PcStates) >

=>

< < ClVal , busy > , (<< PcVal ; ClVal ; gotvalue >> S) > .

}

The next transition is the critical part, the update of the side with the lower value. Here we

are using the built-in if ... then ... else ... fi operator.

3.3. VERIFICATION 11

mod! UPDATE { pr(STATE)

trans[update]:

< < ClVal:Nat , busy > ,

(<< PcVal:Nat ; GotClVal:Nat ; gotvalue >> S:PcStates) >

=>

if PcVal <= GotClVal then

< < ClVal , busy > , (<< GotClVal ; GotClVal ; updated >> S) >

else

< < PcVal , busy > , (<< PcVal ; PcVal ; updated >> S) >

fi .

}

The last transition is sending the both sides of the synchronization into the idle states.

mod! GOTOIDLE { pr(STATE)

trans[gotoidle]:

< < ClVal:Nat , busy > ,

(<< PcVal:Nat ; OldClVal:Nat ; updated >> S:PcStates) >

=>

< < ClVal , idlecl > , (<< PcVal ; OldClVal ; idlepc >> S) > .

}

This completes the complete specification of the protocol, and we are defining a module

CLOUD that collects all that.

mod! CLOUD { pr(GETVALUE + UPDATE + GOTOIDLE) }

3.3 Verification

Aim of the verification is to show correctness in the sense that no two PCs are at the same

time in the busy state. The idea of the proof is to show using induction on the length of

transition sequences from initial states to reachable states, that for all reachable states this

property is fulfilled.

More specific, we give a characterization of initial states, and show that for initial states the

property holds (base case of the induction). Then we show that for all possible transitions,

if the target property holds at the beginning of the transition, it also holds at the end of the

transition.

Combining this with a (meta-level) induction proof on the length of transition sequences,

we show that the target property holds for all reachable states.

12 CHAPTER 3. CLOUDSYNC

Like with loop invariants in other verification schemes, it turns out that a single target

property, the exclusion property mentioned above, does not suffice to hold over transitions,

i.e., act as transition invariant. Thus, we have to extended it with additional properties.

The first part of this mini-tutorial on the specification of CloudSync contained the full code,

but in the following we will, due to space reasons, only include partial code. The latest

version of the CloudSync code can be obtained from [2].

But let us start with the definition of predicates for the initial states. The first step is to

define some elementary functions on states, counting how many PCs are in a certain state:

mod! STATEfuncs {

pr(NAT + STATE)

-- no pc in gotvalue state

pred zero-gotvalue : State .

pred zero-updated : State .

...

}

We are collecting a set of predicates, indicated by their predicate name, and define apply

as an operator that checks each single predicate against a state, and forms the conjunct of

the results.

mod! APPLYPREDS {

pr(STATE)

[PredName < PredNameSeq]

op (_ _) : PredNameSeq PredNameSeq -> PredNameSeq {assoc} .

op apply : PredNameSeq State -> Bool .

eq apply(P:PredName PS:PredNameSeq, S:State) = apply(P,S) and apply(PS,S) .

}

Characterization of the initial state is easy, as it only requires that all PCs as well as the

cloud is in idle state.

mod! INITPREDS {

...

op cl-is-idle-name : -> PredName .

op pcs-are-idle-name : -> PredName .

...

}

3.3. VERIFICATION 13

In the following we define the predicate specifying initial states:

mod! INITIALSTATE {

pr(INITPREDS)

op init-name : -> PredNameSeq .

eq init-name = cl-is-idle-name pcs-are-idle-name .

pred init : State .

eq init(S:State) = apply(init-name, S) .

}

Let us now turn to the most difficult part, that is finding an invariant. This is not a one-

shot technique, but mostly iterative. One starts with a set of predicates, and realizes that

the proofs don’t work out properly, due to some missing properties. Thus, we add new

predicates and iterate until the induction proof finally succeeds.

In the following case we ended up with five different predicates that combined worked as

invariant:

cloud-idle-pcs-idle If the cloud is in the idle state, then all the pcs are also in the idle

state.

pc-clval If the cloud is in busy state, then the value of the cloud and the value in the

temporary storage area of any PCs in the gotvalue or updated states agree.

one-active At most one PC is out of the idle state.

gotvalue-cloud-value If a PC is in the gotvalue state, then the value saved in the tem-

porary storage area and the one of the cloud agree.

goal If a PC is in the updated state, then the value of the PC and the value of the cloud

agree.

See the mentioned web-page for the full code of these modules.

In addition to the necessity to introduce additional predicates to obtain an invariant, it also

often turns out that some properties, or lemmas, have to be stated or proven so that the

verification can work out. In our case some properties on if_then_else_fi constructs, as

well as consequences of rewriting are included in a module NECESSARYFACTS.

The final - and one of the most important parts - is the proof of the two properties:

• base case: if a state satisfies the initial state predicate, it also satisfies the invariant:

red init(S) implies invariant(S) .

14 CHAPTER 3. CLOUDSYNC

• induction step: if a state satisfies the invariant, and we apply a transition, then the

next state also satisfies the invariant: ‘red inv-condition(S, SS) .

In both cases we cannot work with a general variable S, as in this case no rewriting can

take place, and we will not obtain true. What has to be done is to provide a covering set of

state expressions, i.e., a set of terms such that every possible instance of a state is also an

instance of one of these terms. In our case this is quite easy to provide and consists of six

different state terms, combining the three possibilities for a PC with two options of states

for the cloud:

ops s1 s2 s3 s4 t1 t2 t3 t4 : -> State .

eq s1 = < < N , idlecl > , (<< M ; K ; idlepc >> PCS) > .

eq s2 = < < N , idlecl > , (<< M ; K ; gotvalue >> PCS) > .

eq s3 = < < N , idlecl > , (<< M ; K ; updated >> PCS) > .

eq t1 = < < N , busy > , (<< M ; K ; idlepc >> PCS) > .

eq t2 = < < N , busy > , (<< M ; K ; gotvalue >> PCS) > .

eq t3 = < < N , busy > , (<< M ; K ; updated >> PCS) > .

It is easy to see that any arbitrary state term can be obtained as instance of one of these six

state terms.

What we then show is that the above properties do hold for each of these terms, and thus

for each of the reachable states. In details, we show that:

red init(s1) implies invariant(s1) .

red init(s2) implies invariant(s2) .

red init(s3) implies invariant(s3) .

red init(t1) implies invariant(t1) .

red init(t2) implies invariant(t2) .

red init(t3) implies invariant(t3) .

all of these expressions reduce to true. And furthermore, all of the following expressions,

too:

red inv-condition(s1, SS) .

red inv-condition(s2, SS) .

red inv-condition(s3, SS) .

red inv-condition(t1, SS) .

red inv-condition(t2, SS) .

red inv-condition(t3, SS) .

3.3. VERIFICATION 15

Unfortunately, in the case of t2 this didn’t turn out to be directly possible, and a further

case distinction was necessary to complete the proof.

This concludes the presentation of the CloudSync protocol. We described the cloud protocol

using a state system and transitions. This is just one way of implementation. There are other

approaches to specification using purely term-based expressions that do not use transitions,

but equational theory only. One of the strength of CafeOBJ is that it does not require any

specific approach to modeling, but allows for freedom in choosing methodology.

4Gory Details

This chapter presents all syntactic elements of CafeOBJ as well as several meta-concepts in

alphabetic order. Concepts are cross-linked for easy accessibility.

4.1 Ctrl-D

Terminates the input and exit from the interpreter.

4.2 ! <command>

On Unix only, forks a shell and executes the given <command>.

4.3 #define <symbol> := <term> .

TODO

4.4 **, **>

Starts a comment which extends to the end of the line. With the additional > the comment

is displayed while evaluated by the interpreter.

Related: comments, --

4.5 --, -->

Starts a comment which extends to the end of the line. With the additional > the comment

is displayed while evaluated by the interpreter.

Related: comments, **

4.6 .

Input separator

18 CHAPTER 4. GORY DETAILS

4.7 =

The syntax element = introduces an axiom of the equational theory, and is different from

== which specifies an equality based on rewriting.

Related: eq, ==

4.8 =(n)=>, =(n,m)=>, =()=>

See search predicates

4.9 =*=

The predicate for behavioral equivalence, written =*=, is a binary operator defined on each

hidden sort.

4.10 =/=

Negation of the predicate ==.

Related: ==

4.11 ==

The predicate == is a binary operator defined for each visible sort and is defined in terms of

evaluation. That is, for ground terms t and t' of the same sort, t == t' evaluates to true

iff terms reduce to a common term. This is different from the equational = which specifies

the equality of the theory.

4.12 ==>

This binary predicate is defined on each visible sort, and defines the transition relation,

which is reflexive, transitive, and closed under operator application. It expresses the fact

that two states (terms) are connected via transitions.

Related: search predicates, trans

4.13 ? [<term>]

Without any argument, shows the brief guide of online help system. With argument gives

the reference manual description of term. In addition to this, many commands allow for

passing ? as argument to obtain further help.

4.14. ?APROPOS <TERM> [<TERM> ...] 19

In case examples are provided for the <term>, they can be displayed using ?ex <term>. In

this case the normal help output will also contain an informational message that examples

are available.

When called as ?? both documentation and examples are shown.

4.14 ?apropos <term> [<term> ...]

Searches all available online docs for the terms passed. Terms are separated by white space.

Each term is tested independently and all terms have to match. Testing is done either by

simple sub-string search, or, if the term looks like a regular expression (Perl style), by regex

matching. In case a regex-like term cannot be parsed as regular expression, it is used in

normal sub-string search mode.

Note: Fancy quoting with single and double quotes might lead to unexpected problems.

Example

CafeOBJ> ?ap prec oper

will search for all entries that contain both prec and oper as sub-strings. Matching is done

as simple sub-string match.

CafeOBJ> ?ap foo att[er]

will search for entries that contain the string foo as well as either the string atte or attr.

4.15 ?com [<term>]

List commands or declarations categorized by the key . is one of ‘decl’, ‘module’, ‘parse’,

‘rewrite’, ‘inspect’, ‘switch’, ‘proof’, ‘system’, ‘inspect’, ‘library’, ‘help’, ‘io’ or ‘misc’. If is

omitted, the list of available will be printed.

4.16 [

Starts a sort declaration. See sort declaration for details.

4.17 accept =*= proof switch

accept system’s automatic proof of congruency of =*=

20 CHAPTER 4. GORY DETAILS

4.18 all axioms switch

Controls whether axioms from included modules are shown during a show invocation.

Related: show

4.19 always memo switch

Turns on memorization of computation also for operators without the memo operator at-

tribute.

Related: operator attributes, memo

4.20 :apply (<tactic> ...) [to <goal-name>]

Apply the list of tactics given within parenthesis to either the current goal, or the goal given

as <goal-name>.

Related: citp

4.21 apply <action> [<subst>] <range> <selection>

Applies one of the following actions reduce, exec, print, or a rewrite rule to the term in

focus.

reduce, exec, print the operation acts on the (sub)term specified by <range> and

<selection>.

rewrite rule in this case a rewrite rule spec has to be given in the following form:

[+|-][<mod_name>].<rule-id>

where <mod_name> is the name of a module, and <rule-id> either a number n - in

which case the n. equation in the current module is used, or the label of an equation.

If the <mod_name> is not given, the equations of the current module are considered.

If the leading + or no leading character is given, the equation is applied left-to-right,

which with a leading - the equation is applied right-to-left.

The <subst> is of the form

with { <var_name> = <term> } +,

and is used when applying a rewrite rule. In this case the variables in the rule are bound to

the given term.

4.22. :AUTO 21

<range> is either within or at. In the former case the action is applied at or inside the

(sub)term specified by the following selection. In the later case it means exactly at the

(sub)term.

Finally, the <selection> is an expression

<selector> { of <selector> } *

where each <selector> is one of

top, term Selects the whole term

subterm Selects the pre-chosen subterm (see choose)

(<number_list>) A list of numbers separated by blanks as in (2 1) indicates a sub-

term by tree search. (2 1) means the first argument of the second argument.

[<number1> .. <number2>] This selector can only be used with associative operators.

It indicates a subterm in a flattened structure and selects the subterm between and

including the two numbers given. [n .. n] can be abbreviated to [n].

Example: If the term is a * b * c * d * e, then the expression [2 .. 4] selects

the subterm b * c * d.

{ <number_set> } This selector can only be used with associative and commutative

operators. It indicates a subterm in a multiset structure obtained from selecting the sub-

terms at position given by the numbers.

Example: If the operator _*_ is declared as associative and commutative, and the current

term is b * c * d * c * e, then then the expression {2, 4, 5} selects the subterm c *

c * e.

Related: start, choose

4.22 :auto

Applies the following set of tactics: (SI CA TC IP RD).

Related: citp

4.23 auto context switch

Possible values: on or off, default is off.

If this switch is on, the context will automatically switch to the most recent module, i.e.,

defining a module or inspecting a module’s content will switch the current module.

22 CHAPTER 4. GORY DETAILS

4.24 autoload <module-name> <file-name>

When evaluating a and found that it is not yet declared, the system read in then retries the

evaluation.

Related: no autoload

4.25 ax [<label-exp>] <term> = <term> .

(pignose)

4.26 axioms { <decls> }

Block enclosing declarations of variables, equations, and transitions. Other statements are

not allowed within the axioms block. Optional structuring of the statements in a module.

Related: trans, eq, var, imports, signature

4.27 :backward equation|rule

Like :equation and :rule, but exchange the left and right side.

Related: :rule, :equation, :cp, citp

4.28 bax [<label-exp>] <term> = <term> .

(pignose)

4.29 bceq [<label-exp>] <term> = <term> if <boolterm> .

Defines a behavioral conditional equation. For details see ceq.

Related: beq, ceq, eq

4.30 bcrule [<label-exp>] <term> => <term> if <term> .

Synonym of bctrans

Related: bctrans

4.31. BCTRANS [<LABEL-EXP>] <TERM> => <TERM> IF <BOOL> . 23

4.31 bctrans [<label-exp>] <term> => <term> if <bool> .

Defines a behavioral conditional transition. For details see ctrans.

Related: btrans, ctrans, trans

4.32 beq [<label-exp>] <term> = <term> .

Defines a behavioral equation. For details see eq.

Related: bceq, ceq, eq

4.33 bgoal <term> .

(pignose)

4.34 {bguess | :bguess} {imply|and|or} [with <predicate

name>]

TODO

4.35 binspect [in <module-name> :] <boolean-term> .

Start an inspection of a Boolean term, that is, and abstracted form of the Boolean term is

constructed. The abstracted term is shown (like calling bshow.

Example

CafeOBJ> module BTE { [S]

preds p1 p2 p3 p4 p5 p6 p7 : S

ops a b c : -> S .

}

CafeOBJ> binspect in BTE : (p1(X:S) or p2(X)) and p3(Y:S) or (p4(Y) and p1(Y)) .

...

--> ((p4(Y:S) and p1(Y)) xor ((p3(Y) and p1(X:S)) xor ((p2(X) and (p3(Y) and p1(X))) xor ((p3(Y) and p2(X)) xor ((p3(Y) and (p2(X) and (p4(Y) and p1(Y)))) xor ((p3(Y) and (p2(X) and (p1(X) and (p1(Y) and p4(Y))))) xor (p1(X) and (p3(Y) and (p1(Y) and p4(Y))))))))))

...

4.36 :binspect [in <goal-name> :] <boolean-term> .

Used during CITP proofs instead of binspect

24 CHAPTER 4. GORY DETAILS

4.37 bop <op-spec> : <sorts> -> <sort>

Defines a behavioral operator by its domain, co-domain, and the term construct. <sorts> is

a space separated list of sort names containing exactly one hidden sort. <sort> is a single

sort name.

For <op-spec> see the explanations of op.

Related: op

4.38 bpred <op-spec> : <sorts>

Short hand for op <op-spec> : <sorts> -> Bool defining a behavioral predicate.

Related: pred, bop, op

4.39 breduce [in <mod-exp> :] <term> .

Reduce the given term in the given module, if <mod-exp> is given, otherwise in the current

module.

For breduce equations, possibly conditional, possibly behavioral, are taken into account

for reduction.

Related: reduce, execute

4.40 {bresolve | :bresolve} [<limit>] [all]

Computes all possible variable assignments that render an abstracted term true. The vari-

ant with leading colon is for usage during a CITP proof. If an optional argument ‘all’ is

specified, all solutions will be searched. Optional specifies maximal number of variable

combination, i.e. if there are 3 variables v1, v2, and v3, and is 2, the following cases are

examined: (1) v1 : true/false (2) v2 : true/false (3) v3 : true/false (4) v1/v2 : combinations

of true/false of two variables (5) v1/v3 : combinations of true/false of two variables (6)

v2/v3 : combinations of true/false of two variables

Example

CafeOBJ> bresolve 2 all

** (1) The following assignment(s) makes the term to be 'true'.

[1] { P-3:Bool |-> true }

where

4.41. BRULE [<LABEL-EXP>] <TERM> => <TERM> . 25

p-3 = P4(Y:S)

[2] { P-4:Bool |-> true }

where

p-4 = P1(X:S)

** (2) The following assignment(s) makes the term to be 'true'.

[1] { P-1:Bool |-> true, P-2:Bool |-> true }

where

p-1 = P3(Y:S)

p-2 = P2(X:S)

...

4.41 brule [<label-exp>] <term> => <term> .

Synonym of btrans.

Related: btrans

4.42 {bshow | :bshow} [{ tree | grind }]

Shows the abstracted Boolean term computed by binspect. If the argument tree is given,

prints out a the abstracted term in tree form. The variant with leading colon is for usage

during a CITP proof.

Example

CafeOBJ> bshow

((P-1:Bool and (P-2:Bool and (P-3:Bool and P-4:Bool))) xor ((P-1 and (P-2 and (P-4 and (P-5:Bool and P-3)))) xor ((P-2 and (P-1 and (P-5 and P-3))) xor ((P-5 and P-3) xor ((P-4 and (P-3 and P-5)) xor ((P-4 and P-3) xor (P-2 and P-1)))))))

where

P-1:Bool |-> p4(Y:S)

P-2:Bool |-> p1(Y:S)

P-3:Bool |-> p3(Y:S)

P-4:Bool |-> p1(X:S)

P-5:Bool |-> p2(X:S)

4.43 bsort

TODO

26 CHAPTER 4. GORY DETAILS

4.44 btrans [<label-exp>] <term> => <term> .

Defines a behavioral transition. For details see trans.

Related: bctrans, ctrans, trans

4.45 cbred [in <mod-exp> :] <term> .

circular coinductive reduction: see Goguen, Lin, Rosu: Circular Coinductive Rewriting (Pro-

ceedings of Automated Software Engineering 2000) for details.

4.46 cd <dirname>

Change the current working directory, like the Unix counterpart. The argument is necessary.

No kind of expansion or substitution is done.

Related: ls, pwd

4.47 ceq [<label-exp>] <term> = <term> if <boolterm> .

Defines a conditional equation. Spaces around the if are obligatory. <boolterm> needs to

be a Boolean term. For other requirements see eq.

Related: bceq, beq, eq

4.48 check <options>

This command allows for checking of certain properties of modules and operators.

check regularity <mod_exp> Checks whether the module given by the module expres-

sion <mod_exp> is regular.

check compatibility <mod_exp> Checks whether term rewriting system of the module

given by the module expression <mod_exp> is compatible, i.e., every application of

every rewrite rule to every well-formed term results in a well-formed term. (This is

not necessarily the case in order-sorted rewriting!)

check laziness <op_name> Checks whether the given operator can be evaluated lazily.

If not <op_name> is given, all operators of the current module are checked.

Related: regularize

4.49. CHECK <SOMETHING> SWITCH 27

4.49 check <something> switch

These switches turn on automatic checking of certain properties:

check coherency check whether transitions and equations are coherent

check compatibility see the check command

check import check conflicting importing mode of submodules

check regularity see the check command

check sensible check whether a signature is sensible

4.50 choose <selection>

Chooses a subterm by the given <selection>. See apply for details on <selection>.

Related: strat in operator attributes, start, apply

4.51 CITP

Constructor Based Induction Theorem Prover

The sub-system provides a certain level of automatization for theorem proving.

Please see the accompanying manual for CITP for details.

Related: :imp, :def, :ctf-, :ctf, :csp-, :csp, :red, :select, :backward, :rule,

:equation, :cp, :init, :roll, :auto, :ind, :apply, :goal

4.52 clause <term> .

(pignose)

4.53 clean memo

Resets (clears) the memo storage of the system. Memorized computations are forgotten.

Related: clean memo switch

4.54 clean memo switch

Possible values: on, off, default off.

tells the system to be forgetful.

28 CHAPTER 4. GORY DETAILS

4.55 close

This command closes a modification of a module started by open.

Related: open

4.56 commands

Print outs the list of main toplevel commands.

4.57 comments

The interpreter accepts the following strings as start of a comment that extends to the end

of the line: --, -->, **, **>.

The difference in the variants with > is that the comment is displayed when run through

the interpreter.

Related: --, **

4.58 cond limit switch

TODO

4.59 cont

In step mode, continues the reduction until a stop pattern has been found.

4.60 :cp { "[" <label> "]" | "(" <sentence> . ")" } >< { "["

<label> "]" | "(" <sentence> .")" }

Computes the critical pair of the two given equations. Here either a label or a full equation

can be used to specify the equations.

Related: citp

Example

:cp (ceq top(sq(S@Sys)) = I@Pid if pc(S@Sys,I@Pid) = cs .)

><

(ceq top(sq(S@Sys)) = J@Pid if pc(S@Sys,J@Pid) = cs .)

4.61. CRULE [<LABEL-EXP>] <TERM> => <TERM> IF <TERM> . 29

4.61 crule [<label-exp>] <term> => <term> if <term> .

Synonym of ctrans

Related: rule, ctrans

4.62 :csp { eq [<label-exp>] <term> = <term>}

Applies case splitting after a set of equations. Each of these equations creates one new

sub-goal with the equation added.

The system does not check whether given set of equations exhausts all possible values.

Not discharged sub-goals will remain in the reduced form.

Related: :csp-, citp

4.63 :csp- { eq [<label-exp>] <term> = <term>}

Like :csp, but if sub-goals are not discharged, the CITP prover returns to the original state

before the reduce action.

Related: :csp, citp

4.64 :ctf { eq [<label-exp>] <term> = <term> .}

Applies case splitting after a set of boolean expressions. Not discharged sub-goals will

remain in the reduced form.

Related: :ctf-, citp

4.65 :ctf- { eq [<label-exp>] <term> = <term> .}

Like :ctf, but if sub-goals are not discharged, the CITP prover returns to the original state

before the reduce action.

Related: :ctf, citp

4.66 ctrans [<label-exp>] <term> => <term> if <term> .

Defines a conditional transition. For details see trans and ceq.

Related: bctrans, btrans, trans

30 CHAPTER 4. GORY DETAILS

4.67 db reset

(pignose)

4.68 :def <symbol> = { <ctf> | <csp>}

Assigns a name to a specific case splitting (ctf or csp), so that it can be used as tactics in

:apply.

Related: citp

Example

:def name-1 = ctf [<Term> .]

:def name-2 = ctf-{ eq LHS = RHS . }

:def name-3 = csp { eq lhs1 = rhs1 . eq lhs2 = rhs2 . }

:def name-4 = csp-{ eq lhs3 = rhs3 . eq lhs4 = rhs4 . }

:apply(SI TC name-1 name-2 name-3 name-4)

4.69 demod

(pignose)

4.70 :describe proof

Describes the current proof in more detail.

Related: :show, citp

Example

PNAT> :describe proof

==> root*

-- context module: #Goal-root

-- targeted sentences:

eq [lemma-1]: M:PNat + 0 = M .

eq [lemma-2]: M:PNat + s N:PNat = s (M + N) .

[si] 1*

-- context module: #Goal-1

-- targeted sentences:

eq [lemma-1]: 0 + 0 = 0 .

eq [lemma-2]: 0 + s N:PNat = s (0 + N) .

4.71. DESCRIBE <SOMETHING> 31

...

4.71 describe <something>

Similar to the show command but with more details. Call describe ? for the possible set

of invocations.

Related: show

4.72 dirs

Displays the current push stack.

Related: popd, pwd, pushd, cd, ls

4.73 dribble

TODO

4.74 eof

Terminates reading of the current file. Allows for keeping untested code or documentations

below the eof mark. Has to be on a line by itself without leading spaces.

4.75 eq [<label-exp>] <term> = <term> .

Declares an axiom, or equation.

Spaces around the = are necessary to separate the left from the right hand side. The terms

given must belong to the same connected component in the graph defined by the sort or-

dering.

In simple words, the objects determined by the terms must be interpretable as of the same

sort.

The optional part <label-exp> serves two purposes, one is to give an axiom an identifier,

and one is to modify its behavior. The <label-exp> is of the form:

[<modifier> <label>] :

Warning: The square brackets here are not specifying optional components, but syntactical

elements. Thus, a labeled axiom can look like:

eq[foobar] : foo = bar .

32 CHAPTER 4. GORY DETAILS

The <modifier> part is used to change the rewriting behavior of the axiom. There

are at the moment two possible modifiers, namely :m-and (:m-and-also) and :m-or

(:m-or-else). Both make sense only for operators where the arguments come from

an associative sort. In this case both modifiers create all possible permutations of the

arguments and rewrite the original term to the conjunction in case of :m-and or to the

disjunction in case of :m-or of all the generated terms.

Assume that NatSet is a sort with associative constructor modeling a set of natural number,

and let

pred p1: Nat .

ops q1 q2 : NatSet -> Bool .

eq [:m-and]: q1(N1:Nat NS:NatSet) = p1(N1) .

eq [:m-or]: q2(N1:Nat NS:NatSet) = p1(N1) .

In this case an expression like q1(1 2 3) would reduce to p1(1) and p1(2) and p1(3)

(modulo AC), and q2(1 2 3) into the same term with or instead.

Related: bceq, beq, ceq

4.76 :equation

Adds the critical pair computed by the last :cp command as equation to the current goal.

Related: :rule, :cp, citp

4.77 exec limit switch

Possible values: integers, default limit 4611686018427387903.

Controls the number of maximal transition steps.

Related: reduce

4.78 exec trace switch

Possible values: on off, defaultoff‘.

controls whether further output is provided during reductions.

Related: reduce

4.79. EXEC! [IN <MOD-EXP> :] <TERM> . 33

4.79 exec! [in <mod-exp> :] <term> .

TODO

4.80 execute [in <mod-exp> :] <term> .

Reduce the given term in the given module, if <mod-exp> is given, otherwise in the current

module.

For execute equations and transitions, possibly conditional, are taken into account for

reduction.

Related: reduce, breduce

4.81 extending (<modexp>)

Imports the object specified by modexp into the current module, allowing models to be

inflated, but not collapsing. See module expression for format of modexp.

Related: using, protecting, including

4.82 find

TODO

4.83 find all rules switch

If this switch is on, the apply command will search for applicable rules not only in the set

of user-defined equations, but also in those added by the system.

4.84 flag(<name>, { on | off })

(pignose)

4.85 full reset

Reinitializes the internal state of the system. All supplied modules definitions are lost.

Related: prelude, reset

34 CHAPTER 4. GORY DETAILS

4.86 gendoc <pathname>

generates reference manual from system’s on line help documents, and save it to pathname.

4.87 :goal { <sentence> }

Define the initial goal for CITP

Related: citp

Example

CafeOBJ> select PNAT .

PNAT> :goal {

eq [lemma-1]: M:PNat + 0 = M .

eq [lemma-2]: M:PNat + s N:PNat = s(M + N) .

}

4.88 goal <term> .

(pignose)

4.89 :imp "[" <label> "]" by "{" <variable> <- <term>;

..."}"

TODO (future extension)

Related: citp

4.90 imports { <import-decl> }

Block enclosing import of other modules (protecting etc). Other statements are not al-

lowed within the imports block. Optional structuring of the statements in a module.

Related: using, protecting, including, extending, axioms, signature

4.91 include BOOL switch

Possible values: on off, default on.

By default a couple of built-in modules are implicitly imported with protecting mode. In

particular, BOOL is of practical importance. It defines Boolean operators. It is imported to

admit conditional axioms.

4.92. INCLUDE RWL SWITCH 35

This switch allows to disable automatic inclusion of BOOL.

4.92 include RWL switch

Possible values: on off, default off.

This switch allows to disable automatic inclusion of RWL.

4.93 including (<modexp>)

Imports the object specified by modexp into the current module.

See module expression for format of modexp.

Related: module expression, using, protecting, extending

4.94 :ind on <variable>

Defines the variable for the induction tactic of CITP.

Related: citp

Example

:ind on (M:PNat)

4.95 :init { "[" <label> "]" | "(" <sentence> "")} by "{"

<variable> <- <term>; ... "}"

Instantiates an equation specified by <label> by replacing the <variable>s in the equation

with the respective <term>s. The resulting equation is added to the set of axioms.

Related: citp

4.96 input <pathname>

Requests the system to read the file specified by the pathname. The file itself may contain

input commands. CafeOBJ reads the file up to the end, or until it encounters a line that

only contains (the literal) eof.

4.97 inspect <term>

Inspect the internal structure of <term>.

36 CHAPTER 4. GORY DETAILS

4.98 instantiation of parameterized modules

Parameterized modules allow for instantiation. The process of instantiation binds actual

parameters to formal parameters. The result of an instantiation is a new module, obtained

by replacing occurrences of parameter sorts and operators by their actual counterparts. If,

as a result of instantiation, a module is imported twice, it is assumed to be imported once

and shared throughout.

Instantiation is done by

<module_name> (<bindings>)

where <module_name> is the name of a parameterized module, and <bindings> is a comma-

separated list of binding constructs.

using declared views you may bind an already declared view to a parameter:

<parameter> <= <view_name>

If a module M has a parameter X :: T and a view V from T to M' is declared, V may

be bound to X, with the effect that

1. The sort and operator names of T that appear in the body of M are replaced by

those in M', in accordance with V,

2. The common submodules of M and M' are shared.

using ephemeral views In this case the view is declared and used at the same time.

<parameter> <= view to <mod_name> { <view_elements> }

See view for details concerning <view_elements>. The from parameter in the view

declaration is taken from <parameter>.

To make notation more succinct, parameters can be identified also by position instead of

names as in

<mod_name> (<view_name>, <view_name>)

which would bind the <view_name>s to the respective parameters of the parameterized

module <mod_name>.

This can be combined with the ephemeral definition of a view like in the following example

(assume ILIST has two parameters):

module NAT-ILIST {

protecting (ILIST(SIMPLE-NAT { sort Elt -> Nat },

DATATYPE { sort Elt -> Data }))

}

4.99. :IS 37

4.99 :is

Boolean expression: A :is B where A is a term and B is a sort. Returns true if A is of sort

B.

4.100 let <identifier> = <term> .

Using let one can define aliases, or context variables. Bindings are local to the current

module. Variable defined with let can be used in various commands like reduce and

parse.

Although let defined variable behave very similar to syntactic shorthands, they are not.

The right hand side <term> needs to be a fully parsable expression.

4.101 lex (<op>, ..., <op>)

(pignose)

4.102 libpath switch

Possible values: list of strings.

The switch libpath contains a list of directories where CafeOBJ searches for include files.

Addition and removal of directories can be done with

set libpath + <path1>:<path2>:...

set libpath - <path1>:<path2>:...

or the full libpath reset by set libpath <path1>:<path2>:...

The current directory has a privileged status: It is always searched first and cannot be

suppressed.

4.103 lisp

Evaluates the following lisp expression.

Example

CafeOBJ> lisp (+ 4 5)

(+ 4 5) -> 9

38 CHAPTER 4. GORY DETAILS

4.104 lispq

Evaluates the following lisp expression, but does not display the result (q for quiet).

4.105 list { axiom | sos | usable | flag | param | option |

demod }

(pignose)

4.106 look up <something>

displays the location (module) and further information where <something> has been de-

fined.

Example

open INT .

%INT> look up Nat .

Nat

- sort declared in NAT-VALUE

- operator:

op Nat : -> SortId { constr prec: 0 }

-- declared in module NAT-VALUE

%INT>

4.107 ls <pathname>

lists the given pathname. Argument is obligatory.

Related: pwd, cd

4.108 make <mod_name> (<mod_exp>)

This commands defines a new module <mod_name> by evaluating the module expression

<mod_exp>.

Related: module expression

4.109. MATCH <TERM_SPEC> TO <PATTERN> . 39

4.109 match <term_spec> to <pattern> .

Matches the term denoted by <term_spec> to the pattern. <term_spec> is either top or

term for the term set by the start command; subterm for the term selected by the choose

command; it has the same meaning as subterm if choose was used, otherwise the same

meaning as top, or a normal term expression.

The given <pattern> is either rules, -rules, +rules, one of these three prefixed by all,

or a term. If one of the rules are given, all the rules where the left side (for +rules), the

right side (for -rules), or any side (for rules) matches. If the all (with separating space)

is given all rules in the current context, including those declared in built-in modules, are

inspected.

If a term is given, then the two terms are matched, and if successful, the matching substi-

tution is printed.

4.110 memo switch

controls the memorization of computations. The system memorizes evaluations of opera-

tors declared with the memo operator attribute. Turning this switch off disables all memo-

rization.

4.111 [sys:]module[!|*] <modname> [(<params>)] [

<principal_sort_spec>] { mod_elements ... }

Defines a module, the basic building block of CafeOBJ. Possible elements are declarations

of

• import - see protecting, extending, including, using

• sorts - see sort declaration

• variable - see var

• equation - see op, eq, ceq, bop, beq, bceq

• transition - see trans, ctrans, btrans, bctrans

modname is an arbitrary string.

module* introduces a loose semantic based module.

module! introduces a strict semantic based module.

module introduces a module without specified semantic type.

40 CHAPTER 4. GORY DETAILS

If params are given, it is a parameterized module. See parameterized module for more

details.

If principal_sort_spec is given, it has to be of the form principal-sort <sortname>

(or p-sort <sortname>). The principal sort of the module is specified, which allows more

concise views from single-sort modules as the sort mapping needs not be given.

4.112 module expression

In various syntax elements not only module names itself, but whole module expressions

can appear. A typical example is

open <mod_exp> .

which opens a module expression. The following constructs are supported:

module name using the name of a module

renaming <mod_exp> * { <mappings> }

This expressions describes a new module where sort and/or operators are renamed.

<mappings> are like in the case of view a comma separated list of mappings of either

sorts (sort and hsort) or operators (op and bop). Source names may be qualified,

while target names are not, they are required to be new names. Renaming is often

used in combination with instantiation.

summation <mod_exp> + <mod_exp>

This expression describes a module consisting of all the module elements of the

summands. If a submodule is imported more than once, it is assumed to be shared.

4.113 names <mod-exp> .

List up all the named objects in module .

4.114 no autoload <module-name>

Stop autoload of module with the name . Please refer to autoload command.

Related: autoload

4.115 :normalize { on | off}

Normalize the LHS of an instance of the axiom generated by :init command.

Related: citp

4.116. ON-THE-FLY DECLARATIONS 41

4.116 on-the-fly declarations

Variables and constants can be declared on-the-fly (or inline). If an equation contains a

qualified variable (see qualified term), i.e., <name>:<sort-name>, then from this point on

within the current equation only <name> is declared as a variable of sort <sort-name>.

It is allowed to redeclare a previously defined variable name via an on-the-fly declaration,

but as mentioned above, not via an explicit redeclaration.

Using a predeclared variable name within an equation first as is, that is as the predeclared

variable, and later on in the same equation with an on-the-fly declaration is forbidden. That

is, under the assumption that A has been declared beforehand, the following equation is

not valid:

eq foo(A, A:S) = A .

On-the-fly declaration of constants are done the same way, where the <name> is a constant

name as in ‘a:Nat. Using this construct is similar to defining an operator

op <name> : -> <sort>

or in the above example, op a : -> Nat ., besides that the on-the-fly declaration of con-

stants, like to one of variables, is only valid in the current context (i.e., term or axiom).

These constant definitions are quite common in proof scores.

Related: var

4.117 op <op-spec> : <sorts> -> <sort> { <attribute-list> }

Defines an operator by its domain, co-domain, and the term construct. <sorts> is a space

separated list of sort names, <sort> is a single sort name. <op-spec> can be of the follow-

ing forms:

prefix-spec the <op-spec> does not contain a literal _: This defines a normal prefix oper-

ator with domain <sorts> and co-domain <sort>

Example: op f : S T -> U

mixfix-spec the <op-spec> contains exactly as many literal _ as there are sort names in

<sorts>: This defines an arbitrary mixfix (including postfix) operator where the ar-

guments are inserted into the positions designated by the underbars.

Example: op _+_ : S S -> S

For the description of <attribute-list> see the entry for operator attributes.

42 CHAPTER 4. GORY DETAILS

4.118 open <mod_exp> .

This command opens the module specified by the module expression <mod_exp> and allows

for declaration of new sorts, operators, etc.

Related: select, module expression, close

4.119 operator attributes

In the specification of an operator using the op (and related) keyword, attributes of the

operator can be specified. An <attribute-list> is a space-separate list of single attribute

definitions. Currently the following attributes are supported

associative specifies an associative operator, alias assoc

commutative specifies a commutative operator, alias comm

itempotence specifies an idempotent operator, alias idem

id: <const> specifies that an identity of the operator exists and that it is <const>

prec: <int> specifies the parsing precedence of the operator, an integer . Smaller prece-

dence values designate stronger binding. See operator precedence for details of the

predefined operator precedence values.

l-assoc and r-assoc specifies that the operator is left-associative or

right-associative

constr specifies that the operator is a constructor of the coarity sort. (not evaluated at

the moment)

strat: (<int-list>) specifies the evaluation strategy. Each integer in the list refers

to an argument of the operator, where 0 refers to the whole term, 1 for the first

argument, etc. Evaluation proceeds in order of the <int-list>. Example:

op if_then_else_fi : Bool Int Int -> Int { strat: (1 0) }

In this case the first argument (the Boolean term) is tried to be evaluated, and de-

pending on that either the second or third. But if the first (Boolean) argument cannot

be evaluated, no evaluation in the subterms will appear.

Using negative values allows for lazy evaluation of the corresponding arguments.

memo tells the system to remember the results of evaluations where the operator appeared.

See memo switch for details.

4.120. OPERATOR PRECEDENCE 43

Remarks:

• Several operators of the same arity/coarity can be defined by using ops instead of

op:

ops f g : S -> S

For the case of mixfix operators the underbars have to be given and the expression

surrounded by parenthesis:

ops (_+_) (_*_) : S S -> S

• Spaces can be part of the operator name, thus an operator definition of op foo op

: S -> S is valid, but not advisable, as parsing needs hints.

• A single underbar cannot be an operator name.

Related: bop

4.120 operator precedence

CafeOBJ allows for complete freedom of syntax, in particular infix operators and overload-

ing. To correctly parse terms that are ambiguous, all operators have precedence values.

These values can be adjusted manually during definition of the operator (see operator at-

tributes). In absence of manual specification of the operator precedence, the values are

determined by the following rules:

• standard prefix operators, i.e., those of the form op f : S1 .. Sk -> S, receive

operator precedence value 0.

• unary operators, i.e., those of the form op u_ : S1 -> S, receive precedence 15.

• mix-fix operators with first and last token being arguments, i.e., those of the form

op _ arg-or-op _ : S1 .. Sk -> S, receive precedence 41.

• all other operators (constants, operators of the form a _ b, etc.) receive precedence

0.

Related: operator attributes

4.121 option { reset | = <name> }

(pignose)

44 CHAPTER 4. GORY DETAILS

4.122 param(<name>, <value>)

(pignose)

4.123 parameterized module

A module with a parameter list (see module) is a parameterized module. Parameters are

given as a comma (,) separated list. Each parameter is of the form [<import_mode>]

<param_name> :: <module_name> (spaces around :: are obligatory).

The parameter’s module gives minimal requirements on the module instantiation.

Within the module declaration sorts and operators of the parameter are qualified with

.<parameter_name> as seen in the example below.

Related: qualified sort

Example

mod* C {

[A]

op add : A A -> A .

}

mod! TWICE(X :: C) {

op twice : A.X -> A.X .

eq twice(E:A.X) = add.X(E,E) .

}

4.124 parse [in <mod-exp> :] <term> .

Tries to parse the given term within the module specified by the module expression

<mod-exp>, or the current module if not given, and returns the parsed and qualified term.

In case of ambiguous terms, i.e., different possible parse trees, the command will prompt

for one of the trees.

Related: qualified term

4.125 parse normalize switch

TODO

4.126. POPD 45

4.126 popd

Changes the current working directory to the last on on the push stack.

Related: dirs, pwd, pushd, cd, ls

4.127 pred <op-spec> : <sorts>

Short hand for op <op-spec> : <sorts> -> Bool defining a predicate.

Related: bpred, op

4.128 prelude <file>

Loads the given <file> as prelude. That is, a call to reset will reset the definitions made

in this file.

Related: full reset, reset

4.129 print depth switch

Possible values: natural numbers, default unlimited.

Controls to which depth terms are printed.

4.130 print mode switch

Possible values: normal fancy tree s-expr

Selects one of the print modes.

4.131 print trs switch

Possible values: on off, default off

If set to on, print the rules used during reduction of =(_,_)=>+_if_suchThat_{_}.

Related: search predicates

4.132 protect <module-name>

Protect a module from being overwritten. Some modules vital for the system are initially

protected. Can be reversed with unprotect.

Related: unprotect

46 CHAPTER 4. GORY DETAILS

4.133 protecting (<modexp>)

Imports the object specified by modexp into the current module, preserving all intended

models as they are. See module expression for format of modexp.

Related: including, using, extending

4.134 provide <feature>

Discharges a feature requirement: once provided, all the subsequent requirements of a

feature are assumed to have been fulfilled already.

Related: require

4.135 pushd <directory>

Changes the working directory to <directory>, and puts the current directory onto the

push stack. Going back can be done with pop.

Related: dirs, pwd, popd, cd, ls

4.136 pvar <var-name> : <sort-name>

(pignose)

Related: vars, var

4.137 pwd

Prints the current working directory.

Related: dirs, popd, pushd, ls, cd

4.138 qualified sort/operator/parameter

CafeOBJ allows for using the same name for different sorts, operators, and parameters. One

example is declaring the same sort in different modules. In case it is necessary to qualify

the sort, operator, or parameter, the intended module name can be affixed after a literal .:

<name>.<modname>

Example: In case the same sort Nat is declared in both the module SIMPLE-NAT and PANAT,

one can use Nat.SIMPLE-NAT to reference the sort from the former module.

4.139. QUALIFIED TERM 47

Furthermore, a similar case can arise when operators of the same name have been declared

with different number of arguments. During operator renaming (see view) the need for

qualification of the number of parameters might arise. In this case the number can be

specified after an affixed /: <opname>/<argnr>

Related: qualified term, parameterized module

4.139 qualified term

In case that a term can be parsed into different sort, it is possible to qualify the term to one

of the possible sorts by affixing it with : <sort-name> (spaces before and after the : are

optional).

Related: parse

Example

(1):NzNat (2):Nat

4.140 quiet switch

Possible values: on off, default off

If set to on, the system only issues error messages.

Related: verbose

4.141 quit

Leaves the CafeOBJ interpreter.

4.142 { :red | :exec | :bred } [in <goal-name> :] <term> .

reduce the term in specified goal .

Related: citp

4.143 reduce [in <mod-exp> :] <term> .

Reduce the given term in the given module, if <mod-exp> is given, otherwise in the current

module.

For reduce only equations and conditional equations are taken into account for reduction.

48 CHAPTER 4. GORY DETAILS

Related: breduce, execute

4.144 reduce conditions switch

Possible values: on off, default off.

When using apply to step through a reduction, this switch allows to turn on automatic

reduction of conditions in conditional equations.

Related: apply

4.145 regularize <mod-name>

Regularizes the signature of the given module, ensuring that every term has exactly one

minimal parse tree. In this process additional sorts are generated to ensure unique least

sort of all terms.

Modules can be automatically regularized by the interpreter if the regularize signature

switch is turn to on.

4.146 regularize signature switch

See ‘regularize

4.147 require <feature> [<pathname>]

Requires a feature, which usually denotes a set of module definitions. Given this command,

the system searches for a file named the feature, and read the file if found. If the <feature>

contains ::, they are treated as path separators.

If a pathname is given, the system searches for a file named the pathname instead.

Related: provide

Example

CafeOBJ> require foo::bar

would search for foo/bar.cafe in the pathes from libpath

4.148. RESET 49

4.148 reset

Restores the definitions of built-in modules and preludes, but does not affect other mod-

ules.

Related: prelude, full reset

4.149 resolve {. | <file-path> }

(pignose)

4.150 restore <pathname>

Restores module definitions from the designated file pathname which has been saved with

the save command. input can also be used but the effects might be different.

TODO – should we keep the different effects? What is the real difference?

Related: save-system, save, input

4.151 rewrite limit switch

Possible values: positive integers, default not specified.

Allows limiting the number of rewrite steps during a step-wise execution.

Related: step switch

4.152 :roll back

Reverts the strategy that led to the current target goal. The current target goal is removed

from the proof tree.

Related: citp

4.153 :rule

Adds the critical pair computed by the last :cp command as rule to the current goal.

Related: :equation, :cp, citp

50 CHAPTER 4. GORY DETAILS

4.154 rule [<label-exp>] <term> => <term> .

Synonym of trans.

Related: trans

4.155 save <pathname>

Saves module definitions into the designated file pathname. File names should be suffixed

with .bin.

save also saves the contents of prelude files as well as module definitions given in the

current session.

Related: save-system, restore, input

4.156 save-option <name>

(pignose)

4.157 save-system <pathname>

Dumps the image of the whole system into a file. This is functionality provided by the

underlying Common Lisp system and might carry some restrictions.

Related: restore, save, input

4.158 scase (<term>) in (<mod-exp>) as <name> { <decl> ..} :

<term> .

TODO

4.159 search predicates

CafeOBJ provides a whole set of search predicates, that searches the reachable states start-

ing from a given state, optionally checking additional conditions. All of them based on the

following three basic ones:

• S =(n,m)=>* SS [if Pred] search states reachable by 0 or more transitions;

• S =(n,m)=>+ SS [if Pred] search states reachable by 1 or more transitions;

• S =(n,m)=>! SS [if Pred] search states reachable by 0 or more transitions, and

require that the reached state is a final state, i.e., no further transitions can be applied.

4.160. :SELECT <GOAL-NAME> 51

To allow for conditional transitions, a transition is only considered in the search if Pred

holds.

The parameters n and m in these search predicates:

• n, a natural number or *, gives the maximal number of solutions to be searched. If *

is given all solutions are searched exhaustively.

• m, a natural number but not *, gives the maximal depth up to which search is per-

formed.

The predicates return true if there is a (chain of) transitions that fits the parameters (n,m,

and *, +, !) and connects S with SS.

There are two orthogonal extension to this search predicate, one adds a suchThat clause,

one adds a withStateEq clause.

S =(n,m)=>* SS [if Pred1] suchThat Pred2 (and similar for ! and +) In this case not

only the existence, of a transition sequence is tested, but also whether the predicate

Pred2, which normally takes S and SS as arguments, holds.

S =(n,m)=>* SS [if Pred1] withStateEq Pred2 (and similar for ! and +) Pred2 is

used to determine whether a search continues at SS or not, by comparing SS with all

states that have been traversed in the current search. If the predicate Pred2 returns

true on the combination of SS as first argument, and any of the previously visited

states as second argument, then the search is not continued after SS. (This is a kind

of loop detection.)

These two cases can also be combined into

S =(n,m)=>* SS [if Pred1] suchThat Pred2 withStateEq Pred3

4.160 :select <goal-name>

Select a goal for further application of tactics.

Related: citp

4.161 select <mod_exp> .

Selects a module given by the module expression <mod_exp> as the current module. All

further operations are carried out within the given module. In contrast to open this does

not allow for modification of the module, e.g., addition of new sorts etc.

Related: module expression, open

52 CHAPTER 4. GORY DETAILS

4.162 :set(<name>, { on | off | show })

Set or show various flags of CITP CafeOBJ.

Related: citp

4.163 set <name> [option] <value>

Depending on the type of the switch, options and value specification varies. Possible value

types for switches are Boolean (on, off), string ("value"), integers (5434443), lists (lisp

syntax).

For a list of all available switches, use set ?. To see the current values, use show switches.

To single out two general purpose switches, verbose and quiet tell the system to behave

in the respective way.

Related: switches, show

4.164 :show goal|unproved|proof

Shows the current goal, the up-to-now unproven (sub-)goals, and the current proof.

Related: :describe, citp

Example

PNAT> :show proof

root*

[si] 1*

[ca] 1-1*

[ca] 1-2*

[tc] 1-2-1*

[si] 2*

[ca] 2-1*

[ca] 2-2*

[tc] 2-2-1*

PNAT>

4.165 show <something>

The show command provides various ways to inspect all kind of objects of the CafeOBJ

language. For a full list call show ?.

4.166. SHOW MODE SWITCH 53

Some of the more important (but far from complete list) ways to call the show command

are:

• show [<modexp>] - describes the current modules of the one specified as argu-

ment

• show module tree [<modexp>] - displays submodules of in tree format

• show switches - lists all possible switches

• show term [tree] - displays a term, possible in tree format

See the entry for switches for a full list.

Related: describe, switches

4.166 show mode switch

Possible values for set show mode <mode> are cafeobj and meta.

4.167 sigmatch (<mod-exp>) to (<mod-exp>)

(pignose)

4.168 signature { <sig-decl> }

Block enclosing declarations of sorts and operators. Other statements are not allowed

within the signature block. Optional structuring of the statements in a module.

Related: op, sort, imports, axioms

4.169 sort declaration

CafeOBJ supports two kind of sorts, visible and hidden sorts. Visible sorts are introduced

between [and], while hidden sorts are introduced between *[and]*.

[Nat]

[Obs]

Several sorts can be declared at the same time, as in [Nat Int].

Since CafeOBJ is based on order sorting, sorts can form a partial order. Definition of the

partial order can be interleaved by giving

54 CHAPTER 4. GORY DETAILS

[<sorts> < <sorts>]

Where sorts is a list of sort names. This declaration defines an inclusion relation between

each pair or left and right sorts.

Example

[A B , C D < A < E, B < D]

defines five sorts A,…,E, with the following relations: C < A, D < A, A < E, B < D.

4.170 sos { = | + | - } { <clause> , ... }

(pignose)

4.171 :spoiler { on | off}

If the spoiler flag is on, after a strategy other than RD and SI has been applied, the generated

sub-goals are automatically checked for provability using the RD strategy. Defaults to off.

Related: citp

4.172 start <term> .

Sets the focus onto the given term <term> of the currently opened module or context. Com-

mands like apply, choose, or match will then operate on this term.

Related: match, choose, apply

4.173 statistics switch

Possible values: on off, default on.

After each reduction details about the reduction are shown. Information shown are the

time for parsing the expression, the number of rewrites and run time during rewriting, and

the number of total matches performed during the reduce.

4.174. STEP SWITCH 55

4.174 step switch

Possible values: on off, default off.

With this switch turned on, rewriting proceeds in steps and prompts the user interactively.

At each prompt the following commands can be given to the stepper (with our without

leading colon :):

help (h, ?) print out help page

next (n) go one step

continue (c) continue rewriting without stepping

quit (q) leave stepper continuing rewrite

abort (a) abort rewriting

rule (r) print out current rewrite rule

subst (s) print out substitution

limit (l) print out rewrite limit count

pattern (p) print out stop pattern

stop [<term>] . set (or unset) stop pattern

rwt [<number>] . set (or unset) max number of rewrite

Other standard CafeOBJ commands that can be used are show, describe, dirs, set, cd, ls,

pwd, pushd, popd, lisp, lispq, and (on Unix only) !.

4.175 stop

Equivalent to stop pattern switch

4.176 stop pattern switch

In step mode, this command causes reductions to stop when the reductants get to contain-

ing subterms that match the given term. If no term is given, this restriction is lifted.

Related: step switch

Example

CafeOBJ> open NAT .

%NAT> set step on .

%NAT> set stop pattern s 2 .

%NAT> red s s s s s s s s s 0 .

>> target: (s 0)

56 CHAPTER 4. GORY DETAILS

STEP[1]? c

>> term matches to stop pattern: (s 2)

<< will stop rewriting

>> stop because matches stop pattern.

>> target: (s 2)

STEP[3]? c

(9):NzNat

4.177 switches

Switches control various aspects of the computations and behavior of CafeOBJ. The current

list of switches and their values can be shown with

show switches

The single switches are described separately in this manual.

Related: show, set

4.178 trace [whole] switch

During evaluation, it is sometimes desirable to see the rewrite sequences, not just the re-

sults. Setting the switch trace whole will result in the resultant term of each rewrite step

being printed. Setting the switch trace will result in the display of which rule, substitution,

and replacement are used.

4.179 trans [<label-exp>] <term> => <term> .

Defines a transition, which is like an equation but without symmetry.

See eq for specification of requirements on <label-exp> and the terms.

Transitions and equations server similar, but different purpose. In particular, reductions

(both with or without behavior axioms used) do not take transitions into account. Only

exec also uses transitions. On the other hand, the built-in search predicate searches all

possible transitions from a given term.

4.180 unprotect <module-name>

Remove overwrite protection from a module that has been protected with the protect call.

Some modules vital for the system are initially protected.

Related: protect

4.181. USING (<MODEXP>) 57

4.181 using (<modexp>)

Imports the object specified by modexp into the current module without any restrictions on

the models. See module expression for format of modexp.

Related: protecting, including, extending

4.182 var <var-name> : <sort-name>

Declares a variable <var-name> to be of sort <sort-name>. The scope of the variable is the

current module. Redeclarations of variable names are not allowed. Several variable of the

same sort can be declared at the same time using the vars construct:

vars <var-name> ... : <sort-name>

Related: on-the-fly, qualified term, op

4.183 :verbose { on | off }

Turns on verbose reporting of the CITP subsystem.

Related: citp

4.184 verbose switch

Possible values: on off, default off.

If turn on, the system is much more verbose in many commands.

Related: quiet switch

4.185 version

Prints out the version of CafeOBJ.

4.186 view <name> from <modname> to <modname> { <viewelems>

}

A view specifies ways to bind actual parameters to formal parameters (see parameterized

module). The view has to specify the mapping of the sorts as well as the operators.

The <viewelems> is a comma-separated list of expressions specifying these mappings:

58 CHAPTER 4. GORY DETAILS

sort <sortname> -> <sortname>

hsort <sortname> -> <sortname>

op <opname> -> <opname>

bop <opname> -> <opname>

and also can contain variable declarations.

Infix operators are represented as terms containing the operator with either literal under-

scores _, or variables: _*_ or X * Y. The <opname> can be qualified.

In specifying views some rules can be omitted:

1. If the source and target modules have common submodules, all the sorts and mod-

ules declared therein are assumed to be mapped to themselves;

2. If the source and target modules have sorts and/or operators with identical names,

they are mapped to their respective counterparts;

3. If the source module has a single sort and the target has a principal sort, the single

sort is mapped to the principal sort.

Example

Assume a module MONOID with sort M and ops e and * are given, and another SIMPLE-NAT

with sort Nat and operators 0 and + (with the same arity). Then the following expression

constitutes a view:

view NAT-AS-MONOID from MONOID to SIMPLE-NAT {

sort M -> Nat,

op e -> 0,

op _*_ -> _+_

}

Bibliography

[1] Sh. Iida, J. Meseguer, and K. Ogata, eds. Specification, Algebra, and Software - Essays

Dedicated to Kokichi Futatsugi. Vol. 8373. LNCS. Springer, 2014. ISBN: 978-3-642-54623-

5.

[2] Norbert Preining. CafeOBJ. http://www.preining.info/blog/cafeobj/.

http://www.preining.info/blog/cafeobj/

	Contents
	Introduction
	Background of CafeOBJ

	Overview of the system
	Sorts
	Imports
	Variables and Operators
	Equations (or Axioms)

	CloudSync
	Protocol
	Specification
	Verification

	Gory Details
	Ctrl-D
	! <command>
	#define <symbol> := <term> .
	**, **>
	--, -->
	.
	=
	=(n)=>, =(n,m)=>, =()=>
	=*=
	=/=
	==
	==>
	? [<term>]
	?apropos <term> [<term> ...]
	?com [<term>]
	[
	accept =*= proof switch
	all axioms switch
	always memo switch
	:apply (<tactic> ...) [to <goal-name>]
	apply <action> [<subst>] <range> <selection>
	:auto
	auto context switch
	autoload <module-name> <file-name>
	ax [<label-exp>] <term> = <term> .
	axioms { <decls> }
	:backward equation|rule
	bax [<label-exp>] <term> = <term> .
	bceq [<label-exp>] <term> = <term> if <boolterm> .
	bcrule [<label-exp>] <term> => <term> if <term> .
	bctrans [<label-exp>] <term> => <term> if <bool> .
	beq [<label-exp>] <term> = <term> .
	bgoal <term> .
	{bguess | :bguess} {imply|and|or} [with <predicate name>]
	binspect [in <module-name> :] <boolean-term> .
	:binspect [in <goal-name> :] <boolean-term> .
	bop <op-spec> : <sorts> -> <sort>
	bpred <op-spec> : <sorts>
	breduce [in <mod-exp> :] <term> .
	{bresolve | :bresolve} [<limit>] [all]
	brule [<label-exp>] <term> => <term> .
	{bshow | :bshow} [{ tree | grind }]
	bsort
	btrans [<label-exp>] <term> => <term> .
	cbred [in <mod-exp> :] <term> .
	cd <dirname>
	ceq [<label-exp>] <term> = <term> if <boolterm> .
	check <options>
	check <something> switch
	choose <selection>
	CITP
	clause <term> .
	clean memo
	clean memo switch
	close
	commands
	comments
	cond limit switch
	cont
	:cp { "[" <label> "]" | "(" <sentence> . ")" } >< { "[" <label> "]" | "(" <sentence> .")" }
	crule [<label-exp>] <term> => <term> if <term> .
	:csp { eq [<label-exp>] <term> = <term>}
	:csp- { eq [<label-exp>] <term> = <term>}
	:ctf { eq [<label-exp>] <term> = <term> .}
	:ctf- { eq [<label-exp>] <term> = <term> .}
	ctrans [<label-exp>] <term> => <term> if <term> .
	db reset
	:def <symbol> = { <ctf> | <csp>}
	demod
	:describe proof
	describe <something>
	dirs
	dribble
	eof
	eq [<label-exp>] <term> = <term> .
	:equation
	exec limit switch
	exec trace switch
	exec! [in <mod-exp> :] <term> .
	execute [in <mod-exp> :] <term> .
	extending (<modexp>)
	find
	find all rules switch
	flag(<name>, { on | off })
	full reset
	gendoc <pathname>
	:goal { <sentence> }
	goal <term> .
	:imp "[" <label> "]" by "{" <variable> <- <term>; ..."}"
	imports { <import-decl> }
	include BOOL switch
	include RWL switch
	including (<modexp>)
	:ind on <variable>
	:init { "[" <label> "]" | "(" <sentence> "")} by "{" <variable> <- <term>; ... "}"
	input <pathname>
	inspect <term>
	instantiation of parameterized modules
	:is
	let <identifier> = <term> .
	lex (<op>, ..., <op>)
	libpath switch
	lisp
	lispq
	list { axiom | sos | usable | flag | param | option | demod }
	look up <something>
	ls <pathname>
	make <mod_name> (<mod_exp>)
	match <term_spec> to <pattern> .
	memo switch
	[sys:]module[!|*] <modname> [(<params>)] [<principal_sort_spec>] { mod_elements ... }
	module expression
	names <mod-exp> .
	no autoload <module-name>
	:normalize { on | off}
	on-the-fly declarations
	op <op-spec> : <sorts> -> <sort> { <attribute-list> }
	open <mod_exp> .
	operator attributes
	operator precedence
	option { reset | = <name> }
	param(<name>, <value>)
	parameterized module
	parse [in <mod-exp> :] <term> .
	parse normalize switch
	popd
	pred <op-spec> : <sorts>
	prelude <file>
	print depth switch
	print mode switch
	print trs switch
	protect <module-name>
	protecting (<modexp>)
	provide <feature>
	pushd <directory>
	pvar <var-name> : <sort-name>
	pwd
	qualified sort/operator/parameter
	qualified term
	quiet switch
	quit
	{ :red | :exec | :bred } [in <goal-name> :] <term> .
	reduce [in <mod-exp> :] <term> .
	reduce conditions switch
	regularize <mod-name>
	regularize signature switch
	require <feature> [<pathname>]
	reset
	resolve {. | <file-path> }
	restore <pathname>
	rewrite limit switch
	:roll back
	:rule
	rule [<label-exp>] <term> => <term> .
	save <pathname>
	save-option <name>
	save-system <pathname>
	scase (<term>) in (<mod-exp>) as <name> { <decl> ..} : <term> .
	search predicates
	:select <goal-name>
	select <mod_exp> .
	:set(<name>, { on | off | show })
	set <name> [option] <value>
	:show goal|unproved|proof
	show <something>
	show mode switch
	sigmatch (<mod-exp>) to (<mod-exp>)
	signature { <sig-decl> }
	sort declaration
	sos { = | + | - } { <clause> , ... }
	:spoiler { on | off}
	start <term> .
	statistics switch
	step switch
	stop
	stop pattern switch
	switches
	trace [whole] switch
	trans [<label-exp>] <term> => <term> .
	unprotect <module-name>
	using (<modexp>)
	var <var-name> : <sort-name>
	:verbose { on | off }
	verbose switch
	version
	view <name> from <modname> to <modname> { <viewelems> }

	Bibliography

