
CafeOBJ Reference Manual

Toshimi Sawada, Kokichi Futatsugi, Norbert Preining

2014-06-19

ii

Contents

Contents i

1 Introduction 1

2 Overview of the system 3

3 CloudSync 7

4 Gory Details 17

Bibliography 51

1Introduction
This manual introduces the language CafeOBJ. Is is a reference manual with the aim to
document the current status of the language, and not targeting at an exhaustive presen-
tation of the mathematical and logical background. Still, the next section will give a short
summary of the underlying formal approach and carry references for those in search for
details.

Themanual is structured into three parts. The first one being this introduction, the second
one being the presentation of basic concepts of CafeOBJ by providing a simple protocol
which will get specified and verified. Although the second part tries to give a view onto the
core features and their usage, it should not be considered a course in CafeOBJ, and cannot
replace a proper introduction to the language. The CafeOBJ distribution also includes a
user manual. This user manual is slightly outdated with respect to the current status of
the language, but is targeting those without and prior knowledge of CafeOBJ.

Finally, the last part consists of explanations of all current language elements in alphabetic
order. This includes several higher level concepts, as well as heavy cross-referencing.

While we hope that this manual and the introductory part helps beginners to start pro-
gramming in CafeOBJ, the main target are those who already have acquired a certain level
of fluency, but are in need for a reference of the language.

1.1 Background of CafeOBJ

CafeOBJ is an algebraic specification and verification language. Although it can be em-
ployed for all kind of programming (since it is Turing complete), the main target are
algebraic specification of software systems. This includes programs, protocols, and all
kind of interaction specifications. In addition to being a specification language, it is also
a verification language, that is, a specification given in CafeOBJ can be verified within the
same language environment.

Specification here means that we are trying to describe the inner workings of a software
system in a mathematical way, while verification means that we give a mathematical proof
of certain properties. A specification is a text, usually of formal syntax. It denotes an
algebraic system constructed out of sorts (or data types) and sorted (or typed) operators.

2 CHAPTER 1. INTRODUCTION

The system is characterize by the axioms in the specification. An axiom was traditionally
a plain equation (“essentially algebraic”), but is now construed much more broadly. For
example, CafeOBJ accommodates conditional equations, directed transitions, and (limited)
use of disequality.

CafeOBJ is based on three extensions to the basic many-sorted equational logic:

Order-sorted logic In addition to having different sorts (similar to types in other pro-
gramming languages), these sorts can be ordered, or in other words, one sort can
be a subset of another sort: Take for example the number stack: CafeOBJ allows
for the provision of natural numbers, which are part of the rational numbers, which
are part of the real numbers. This concept allows for operator inheritance and over-
loading.

Behavioral logic Algebraic modeling is often based on constructors, i.e., all terms under
discussion are built up from given operations, and equality can be decided via an
equational theory. While being very successful, it is often necessary to model in-
finite objects (like data streams), which cannot be achieved in this way. CafeOBJ
includes behavioral logic and the respective hidden sorts as methodology to model
infinite objects which identity is defined via behavior instead of the equational the-
ory.

Rewriting logic Aim of a algebraic specification and verification is to give a formal proof
of correctness. CafeOBJ contains order-sorted term rewriting as operational seman-
tics, which allows for execution of proof scores, CafeOBJ code which forms a proof
of the required properties.

There is a wide range of literature on all of these subjects for the interested reader in
search for theoretical background. We refer the reader to [1] as a starting point.

2Overview of the system

Let us start with a simple definition of a module, which are the basic building blocks of
any CafeOBJ program:

mod NATPAIR {
pr(NAT)
[Pair]
var P : Pair
op <_,_> : Nat Nat -> Pair {constr}
op fst : Pair -> Nat
op snd : Pair -> Nat
eq fst(< A:Nat , B:Nat >) = A .
eq snd(< A:Nat , B:Nat >) = B .

}

This example already presents most of the core concepts of CafeOBJ:

• modules as the basic building blocks
• import of other modules pr(NAT)
• sorts [Pair]
• operator signature and equations

Let us start with sorts, as they are the fundamental types.

2.1 Sorts

Most programming languages allow for different sorts, or types of objects. In this respect
CafeOBJ is not different and allows to have arbitrary sorts. In addition, these sorts can
be ordered, more specific one sort can be declared a sub-sort of another. In the above
example

4 CHAPTER 2. OVERVIEW OF THE SYSTEM

[Pair]

a new sort called Pair is introduced. This is a completely new sort and is in no sub-sort
relation to any other sort. This is a very common case, and reflects the different types of
objects in other programming languages.

In case one wants to introduce ordering in the sorts, the order can be expressed together
with the definition of the sort, as in:

[Nat < Set]

which would introduce a new sort Set and declares it as supersort of the (builtin) sort
Nat.

For more details concerning sorts, see sort declaration.

2.2 Imports

CafeOBJ allows for importing and reusing of already defined modules:

pr(NAT)

for example pulls in the natural numbers (in a very minimal implementation). There are
several modes of pulling in other modules, differing in the way the (semantic) models of
the included module are treated.

After a statement of import, the sorts, variables, and operators of the imported modules
can be used.

For more details see protecting, extending, using, including

2.3 Variables and Operators

While sorts define data types, variables hold objects of a specific type, and operators
define functionality. For each variable its sort has to be declared, and for each operator
the signature, i.e., the sorts of the input data and the sort of the output, has to be given.

var P : Pair
op fst : Pair -> Nat

2.4. EQUATIONS (OR AXIOMS) 5

This example declares a variable P of type pair, and an operator fst which maps the sort
Pair to the sort Nat, or in other words, a function that maps pairs of natural numbers to
natural numbers.

We have seen already a different way to specify operators, namely

op <_,_> : Nat Nat -> Pair {constr}

which introduces an infix operator. CafeOBJ is very flexible and allows to freely specify the
syntax. In an operator declaration as the above, the underscores _ represent arguments to
the operator. That also means that the number of underscores must match the number of
sorts given before the ->. After the above declaration CafeOBJ will be able to parse terms
like < 3 , 4 > and correctly type them as pair.

For further details, see var, op.

2.4 Equations (or Axioms)

Using sorts, variables, and operators we have specified the terms that we want to speak
about. In the following equations, or sometimes called axioms, will equate different terms.
Equating here is meant in the algebraic sense, but also in the term-rewriting sense, as equa-
tions form the basis of rewrite rules which provide CafeOBJ with the executable semantics:

eq fst(< A:Nat , B:Nat >) = A .
eq snd(< A:Nat , B:Nat >) = B .

As soon as an operator like fst has been declared, we can give equations. In this case we
define fst of a pair to return the first element.

For further details see eq.

In the following chapter we will include the specification of a protocol with the full code,
explaining some concepts on the way.

3CloudSync

In the following we will model a very simple protocol for cloud syncronization of a set
of PCs. The full code of the actual specification, as well as parts of the verification proof
score will be included and discussed.

Besides giving an example of a specification and verification, we also try to explain several
of the most important concepts in CafeOBJ using rather simple examples.

3.1 Protocoll

One cloud computer and arbitrary many PCs have one value each that they want to keep
in sync. This value is a natural number, and higher values mean more recent (like SVN
revision numbers).

The Cloud can be in two states, idle and busy, while the PCs can be on of the following
three states: idle, gotvalue, updated. The Cloud as well as all PCs are initially in the idle
state. When a PC connects to the cloud, three things happen:

1. the cloud changes into busy state
2. the PC reads the value of the cloud and saves it in a temporary location
3. the PC changes into gotvalue state

In the gotvalue state the PC compares his own value against the value it got from the
cloud, and updates accordingly (changes either the cloud or the own value to the larger
one). After this the PC changes into the updated state.

From the update state both the Cloud and the PC return into the idle state.

TODO include a graphic that shows this TODO

3.2 Specification

We will now go through the full specification with explanations of some of the points
surfacing. We are starting with two modules that specify the possible states the cloud
and the PCs can be in:

8 CHAPTER 3. CLOUDSYNC

mod! CLLABEL {
[ClLabelLt < ClLabel]
ops idlecl busy : -> ClLabelLt {constr} .
eq (L1:ClLabelLt = L2:ClLabelLt) = (L1 == L2) .

}
mod! PCLABEL {

[PcLabelLt < PcLabel]
ops idlepc gotvalue updated : -> PcLabelLt {constr} .
eq (L1:PcLabelLt = L2:PcLabelLt) = (L1 == L2) .

}

Both modules define two new sorts each, the actual label, and literals for the labels. One
can see that we declare the signatures of the literal labels with the ops keyword, which
introduces several operators of the same signature at the same time.

The last equation in each models provides a definition of equality by using the behavioral
equality ==. The predicate == is the equivalence predicate defined via reduction. Thus,
the two axioms given above state that two literals for labels are the same if they are
syntactically the same, since they cannot be rewritten anymore.

Furthermore, note that we choose different names for the idle state of the PCs and the
cloud, to have easy separation.

The next module introduces a parametrized pair module. Parametrizing modules is a
very powerful construction, and common in object oriented programming languages. In
principle we leave open what are the actual components of the pairs, and only specify the
operational behaviour on a single pair.

In this and the next example of the multi-set, there are no additional requirements on the
sorts that can be used to instantiate a pair (or multi-set). In a more general setting the
argument after the double colon :: refers to a sort, and an instantiation must be adequate
for this sort (details require deeper understanding of homomorphism).

mod! PAIR(X :: TRIV,Y :: TRIV) {
[Pair]
op <_,_> : Elt.X Elt.Y -> Pair {constr}
op fst : Pair -> Elt.X
op snd : Pair -> Elt.Y
eq fst(< A:Elt.X,B:Elt.Y >) = A .
eq snd(< A:Elt.X,B:Elt.Y >) = B .

}

3.2. SPECIFICATION 9

The next module is also parametrized, axiomatizing the concept of multi-set where a
certain element can appear multiple times in the multi-set. We want to use this module
to present another feature, namely the option to specify additional properties of some
operators. In this case we are specifying that the constructor for sets is associative assoc,
commutative comm, and has as identity the empty set.

While it is easily possible to add associativity and commutativity as axioms directly, this
is not advisable, especially for commutativity. Assume adding the simple equation eq
A * B = B * A .. This defines a rewrite rule from left to right. But since A and B are
variables the can be instantiated with arbitrary subterms, and one would end up with an
infinite rewriting.

mod MULTISET(X :: TRIV) {
[Elt.X < MultiSet]
op empty : -> MultiSet {constr} .
-- associative and commutative set constructor with identity empty
op (_ _) : MultiSet MultiSet -> MultiSet { constr assoc comm id: empty }

}

With all this set up we can defined the cloud state as a pair of a natural number, and a state.
Here we see how a parametrized module is instantiated. The details of the renaming for
the second element are a bit involved, but thinking about renaming of sorts and operators
to match the ones given is the best idea.

Having this in mind we see that when we put the CLLABEL into the second part of the pair,
we tell the system that it should use the ClLabel sort for the instantiation of the Elt sort,
and not the ClLabelLt sort.

Furthermore, after the instantiation we rename the final outcome again. In this case we
rename the Pair to ClState, and the operators to their cousins with extension in the
name.

mod! CLSTATE {
pr(PAIR(NAT, CLLABEL{sort Elt -> ClLabel})*

{sort Pair -> ClState, op fst -> fst.clstate, op snd -> snd.clstate })
}

The PC state is now very similar, only that we have to have a triple (3TUPLE is a builtin
predicate of CafeOBJ), since we need one additional place for the temporary value. In the
same way as above we rename the Elt to PcLabel and the outcome back to PcState.

10 CHAPTER 3. CLOUDSYNC

mod! PCSTATE {
pr(3TUPLE(NAT, NAT, PCLABEL{sort Elt -> PcLabel})*{sort 3Tuple -> PcState})

}

As we will have an arbitrary set of PCs, we define the multi-set of all PC states, by instati-
ating the multi-set from above with the just defined PcState sort, and rename the result
to PcStates.

mod! PCSTATES {
pr(MULTISET(PCSTATE{sort Elt -> PcState})*{sort MultiSet -> PcStates})

}

Finally, the state of the whole system is declared as a pair of the cloud state and the pc
states.

mod! STATE {
pr(PAIR(CLSTATE{sort Elt -> ClState},

PCSTATES{sort Elt -> PcStates})*{sort Pair -> State})
}

The final part is to specify transitions. We have described the protocol by a state machine,
and the following transitions will model the transitions in this machine.

The first transition is the initialization of the syncronization by reading the cloud value,
saving it into the local register, and both partners go into busy state.

Note that, since we have declared multi-set as commutative and associative, we can as-
sume that the first element of the multi-set is actually the one we are acting on.

Transitions are different from axioms in the sense that the do not state that two terms
are the same, but only that one terms can change into another.

mod! GETVALUE { pr(STATE)
trans[getvalue]:
< < ClVal:Nat , idlecl > ,

(<< PcVal:Nat ; OldClVal:Nat ; idlepc >> S:PcStates) >
=>
< < ClVal , busy > , (<< PcVal ; ClVal ; gotvalue >> S) > .

}

The next transition is the critical part, the update of the side with the lower value. Here
we are using the built-in if ... then ... else ... fi operator.

3.3. VERIFICATION 11

mod! UPDATE { pr(STATE)
trans[update]:

< < ClVal:Nat , busy > ,
(<< PcVal:Nat ; GotClVal:Nat ; gotvalue >> S:PcStates) >

=>
if PcVal <= GotClVal then

< < ClVal , busy > , (<< GotClVal ; GotClVal ; updated >> S) >
else

< < PcVal , busy > , (<< PcVal ; PcVal ; updated >> S) >
fi .

}

The last transition is sending the both sides of the syncronization into the idle states.

mod! GOTOIDLE { pr(STATE)
trans[gotoidle]:

< < ClVal:Nat , busy > ,
(<< PcVal:Nat ; OldClVal:Nat ; updated >> S:PcStates) >

=>
< < ClVal , idlecl > , (<< PcVal ; OldClVal ; idlepc >> S) > .

}

This completes the complete specification of the protocol, and we are defining a module
CLOUD that collects all that.

mod! CLOUD { pr(GETVALUE + UPDATE + GOTOIDLE) }

3.3 Verification

Aim of the verification is to show correctness in the sense that no two PCs are at the same
time in the busy state. The idea of the proof is to show using induction on the length of
transition sequences from initial states to reachable states, that for all reachable states
this property is fulfilled.

More specific, we give a characterization of initial states, and show that for initial states the
property holds (base case of the induction). Then we show that for all possible transitions,
if the target property holds at the beginning of the transition, it also holds at the end of
the transition.

Combining this with a (meta-level) induction proof on the length of transition sequences,
we show that the target property holds for all reachable states.

12 CHAPTER 3. CLOUDSYNC

Like with loop invariants in other verification schemes, it turns out that a single target
property, the exclusion property mentioned above, does not suffice to hold over transi-
tions, i.e., act as transition invariant. Thus, we have to extended it with additional prop-
erties.

The first part of this mini-tutorial on the specification of CloudSync contained the full
code, but in the following we will, due to space reasons, only include partial code. The
latest version of the CloudSync code can be obtained from [2].

But let us start with the definition of predicates for the initial states. The first step is to
define some elementary functions on states, counting how many PCs are in a certain state:

mod! STATEfuncs {
pr(NAT + STATE)
-- no pc in gotvalue state
pred zero-gotvalue : State .
pred zero-updated : State .
...

}

We are collecting a set of predicates, indicated by their predicate name, and define apply
as an operator that checks each single predicate against a state, and forms the conjunct
of the results.

mod! APPLYPREDS {
pr(STATE)
[PredName < PredNameSeq]
op (_ _) : PredNameSeq PredNameSeq -> PredNameSeq {assoc} .
op apply : PredNameSeq State -> Bool .
eq apply(P:PredName PS:PredNameSeq, S:State) = apply(P,S) and apply(PS,S) .

}

Characterization of the initial state is easy, as it only requires that all PCs as well as the
cloud is in idle state.

mod! INITPREDS {
...
op cl-is-idle-name : -> PredName .
op pcs-are-idle-name : -> PredName .
...

}

3.3. VERIFICATION 13

In the following we define the predicate specifying initial states:

mod! INITIALSTATE {
pr(INITPREDS)
op init-name : -> PredNameSeq .
eq init-name = cl-is-idle-name pcs-are-idle-name .
pred init : State .
eq init(S:State) = apply(init-name, S) .

}

Let us now turn to the most difficult part, that is finding an invariant. This is not a one-
shot technique, but mostly iterative. One starts with a set of predicates, and realizes that
the proofs don’t work out properly, due to some missing properties. Thus, we add new
predicates and iterate until the induction proof finally succeeds.

In the following case we ended up with five different predicates that combined worked as
invariant:

cloud-idle-pcs-idle If the cloud is in the idle state, then all the pcs are also in the idle
state.

pc-clval If the cloud is in busy state, then the value of the cloud and the value in the
temporary storage area of any PCs in the gotvalue or updated states agree.

one-active At most one PC is out of the idle state.

gotvalue-cloud-value If a PC is in the gotvalue state, then the value saved in the
temporary storage area and the one of the cloud agree.

goal If a PC is in the updated state, then the value of the PC and the value of the cloud
agree.

See the mentioned web-page for the full code of these modules.

In addition to the necessity to introduce additional predicates to obtain an invariant, it also
often turns out that some properties, or lemmas, have to be stated or proven so that the
verification can work out. In our case some properties on if_then_else_fi constructs,
as well as consequences of rewriting are included in a module NECESSARYFACTS.

The final - and one of the most important parts - is the proof of the two properties:

• base case: if a state satisfies the initial state predicate, it also satisfies the invariant:
red init(S) implies invariant(S) .

14 CHAPTER 3. CLOUDSYNC

• induction step: if a state satisfies the invariant, and we apply a transition, then the
next state also satisfies the invariant: ‘red inv-condition(S, SS) .

In both cases we cannot work with a general variable S, as in this case no rewriting can
take place, and we will not obtain true. What has to be done is to provide a covering set
of state expressions, i.e., a set of terms such that every possible instance of a state is also
an instance of one of these terms. In our case this is quite easy to provide and consists
of six different state terms, combining the three possibilities for a PC with two options of
states for the cloud:

ops s1 s2 s3 s4 t1 t2 t3 t4 : -> State .
eq s1 = < < N , idlecl > , (<< M ; K ; idlepc >> PCS) > .
eq s2 = < < N , idlecl > , (<< M ; K ; gotvalue >> PCS) > .
eq s3 = < < N , idlecl > , (<< M ; K ; updated >> PCS) > .
eq t1 = < < N , busy > , (<< M ; K ; idlepc >> PCS) > .
eq t2 = < < N , busy > , (<< M ; K ; gotvalue >> PCS) > .
eq t3 = < < N , busy > , (<< M ; K ; updated >> PCS) > .

It is easy to see that any arbitrary state term can be obtained as instance of one of these
six state terms.

What we then show is that the above properties do hold for each of these terms, and thus
for each of the reachable states. In details, we show that:

red init(s1) implies invariant(s1) .
red init(s2) implies invariant(s2) .
red init(s3) implies invariant(s3) .
red init(t1) implies invariant(t1) .
red init(t2) implies invariant(t2) .
red init(t3) implies invariant(t3) .

all of these expressions reduce to true. And furthermore, all of the following expressions,
too:

red inv-condition(s1, SS) .
red inv-condition(s2, SS) .
red inv-condition(s3, SS) .
red inv-condition(t1, SS) .
red inv-condition(t2, SS) .
red inv-condition(t3, SS) .

3.3. VERIFICATION 15

Unfortunately, in the case of t2 this didn’t turn out to be directly possible, and a further
case distinction was necessary to complete the proof.

This concludes the presentation of the CloudSync protocol. We described the cloud pro-
tocol using a state system and transitions. This is just one way of implementation. There
are other approaches to specification using purely term-based expressions that do not
use transitions, but equational theory only. One of the strength of CafeOBJ is that it
does not require any specific approach to modeling, but allows for freedom in choosing
methodology.

4Gory Details

This chapter presents all syntactic elements of CafeOBJ as well as several meta-concepts
in alphabetic order. Concepts are cross-linked for easy accessibility.

4.1 Ctrl-D

4.2 ! <command>

On Unix only, forks a shell and executes the given <command>.

4.3 #define

4.4 **, **>

Starts a comment which extends to the end of the line. With the additional > the comment
is displayed while evaluated by the interpreter.

Related: comments, --

4.5 --, -->

Starts a comment which extends to the end of the line. With the additional > the comment
is displayed while evaluated by the interpreter.

Related: comments, **

4.6 .

Do nothing.

4.7 :apply (<tactic> ...) [to <goal-name>] ## {#:apply}

TODO

18 CHAPTER 4. GORY DETAILS

4.8 :auto ## {#:auto}

TODO

4.9 :backward equation ## {#:backward}

TODO

4.10 :cp { "[" <label> "]" | "(" <axiom> . ")" } >< { "["
<label> "]" | "(" <axiom> .")" } ## {#:cp}

TODO

4.11 :equation ## {#:equation}

TODO

4.12 :goal { <axiom> } ## {#:goal}

TODO

4.13 :ind on <variable> ## {#:ind}

TODO

4.14 :init { "[" <label> "]" | "(" <axiom> "")} "{"
<variable> <- <term>; ... "}" ## {#:init}

TODO

4.15 :is ## {#:is}

Boolean expression: A :is B where A is a term and B is a sort. Returns true if A is of sort
B.

4.16 :lred <term> . ## {#:red}

TODO

4.17. :ROLL BACK ## {#:ROLL} 19

4.17 :roll back ## {#:roll}

TODO

4.18 :rule ## {#:rule}

TODO

4.19 :select <goal-name> ## {#:select}

TODO

4.20 :verbose { on | off } ## {#:verbose}

TODO

4.21 =

The syntax element = introduces an axiom of the equational theory, and is different from
== which specifies an equality based on rewriting.

Related: eq, ==

4.22 =(n)=>, =(n,m)=>, =()=>

See search predicates

4.23 =*=

The predicate for behavioural equivalence, written =*=, is a binary operator defined on
each hidden sort.

TODO: old manual very unclear … both about =*= and accept =*= proof ??? (page 46
of old manual)

4.24 =/=

Negation of the predicate ==.

20 CHAPTER 4. GORY DETAILS

4.25 ==

The predicate == is a binary operator defined for each visible sort and is defined in terms
of evaluation. That is, for ground terms t and t' of the same sort, t == t' evaluates to
true iff terms reduce to a common term. This is different from the equational = which
specifies the equality of the theory.

4.26 ==>

This binary predicate is defined on each visible sort, and defines the transition relation,
which is reflexive, transitive, and closed under operator application. It expresses the fact
that two states (terms) are connected via transitions.

Related: search predicates, trans

4.27 ? [<term>]

Without any argument, lists all top-level commands. With argument gives the reference
manual description of term. In addition to this, many commands allow for passing ? as
argument to obtain further help.

In case examples are provided for the <term>, they can be displayed using ?ex <term>. In
this case the normal help output will also contain an informational message that examples
are available.

When called as ?? both documentation and examples are shown.

4.28 ?apropos <term> [<term> ...]

Searches all available online docs for the terms passed. Terms are separated by white
space. Each term is tested independently and all terms have to match. Testing is done
either by simple sub-string search, or, if the term looks like a regular expression (Perl style),
by regex matching. In case a regex-like term cannot be parsed as regular expression, it is
used in normal sub-string search mode.

Note: Fancy quoting with single and double quotes might lead to unexpected problems.

Example

CafeOBJ> ?ap prec oper

will search for all entries that contain both prec and oper as substrings. Matching is done
as simple sub-string match.

4.29. [21

CafeOBJ> ?ap foo att[er]

will search for entries that contain the string foo as well as either the string atte or attr.

4.29 [

Starts a sort declaration. See sort declaration for details.

4.30 accept =*= proof switch

TODO missing documentation difficult - see TODO for =*=

4.31 all axioms switch

Controls whether axioms from included modules are shown during a show invocation.

Related: show

4.32 always memo switch

Turns on memorization of computation also for operators without the memo operator
attribute.

Related: operator attributes, memo

4.33 apply <action> [<subst>] <range> <selection>

Applies one of the following actions reduce, exec, print, or a rewrite rule to the term in
focus.

reduce, exec, print the operation acts on the (sub)term specified by <range> and
<selection>.

rewrite rule in this case a rewrite rule spec has to be given in the following form:

[+|-][<mod_name>].<rule-id>

where <mod_name> is the name of a module, and <rule-id> either a number n - in
which case the n. equation in the current module is used, or the label of an equation.
If the <mod_name> is not given, the equations of the current module are considered.
If the leading + or no leading character is given, the equation is applied left-to-right,
which with a leading - the equation is applied right-to-left.

22 CHAPTER 4. GORY DETAILS

The <subst> is of the form

with { <var_name> = <term> } +,

and is used when applying a rewrite rule. In this case the variables in the rule are bound
to the given term.

<range> is either within or at. In the former case the action is applied at or inside the
(sub)term specified by the following selection. In the later case it means exactely at the
(sub)term.

Finally, the <selection> is an expression

<selector> { of <selector> } *

where each <selector> is one of

top, term Selects the whole term

subterm Selects the pre-chosen subterm (see choose)

(<number_list>) A list of numbers separated by blanks as in (2 1) indicates a sub-
term by tree search. (2 1) means the first argument of the second argument.

[<number1> .. <number2>] This selector can only be used with associative opera-
tors. It indicates a subterm in a flattened structure and selects the subterm between
and including the two numbers given. [n .. n] can be abbreviated to [n].

Example: If the term is a * b * c * d * e, then the expression [2 .. 4] selects
the subterm b * c * d.

{ <number_set> } This selector can only be used with associative and commutative

operators. It indicates a subterm in a multiset structure obtained from selecting the sub-
terms at position given by the numbers.

Example: If the operator _*_ is declared as associative and commutative, and the current
term is b * c * d * c * e, then then the expression {2, 4, 5} selects the subterm c
* c * e.

Related: start, choose

4.34 auto context switch

Possible values: on or off, default is off.

If this switch is on, the context will automatically switch to the most recent module, i.e.,
defining a module or inspecting a module’s content will switch the current module.

4.35. AUTOLOAD 23

4.35 autoload

4.36 ax

(pignose)

4.37 axioms { <decls> }

Block enclosing declarations of variables, equations, and transitions. Other statements
are not allowed within the axioms block. Optional structuring of the statements in a
module.

Related: trans, eq, var, imports, signature

4.38 bax

(pignose)

4.39 bceq [<op-exp>] <term> = <term> if <boolterm> .

Defines a behaviour conditional equation. For details see ceq.

Related: beq, ceq, eq

4.40 bctrans [<label-exp>] <term> => <term> if <bool> .

Defines a behaviour conditional transition. For details see ctrans.

Related: btrans, ctrans, trans

4.41 beq [<op-exp>] <term> = <term> .

Defines a behaviour equation. For details see eq.

Related: bceq, ceq, eq

4.42 bgoal

(pignose)

24 CHAPTER 4. GORY DETAILS

4.43 bop <op-spec> : <sorts> -> <sort>

Defines a behavioural operator by its domain, codomain, and the term construct. <sorts>
is a space separated list of sort names containing exactely one hidden sort. <sort> is a
single sort name.

For <op-spec> see the explanations of op.

Related: op

4.44 bpred <op-spec> : <sorts>

Short hand for op <op-spec> : <sorts> -> Bool defining a behavioural predicate.

Related: pred, bop, op

4.45 breduce [in <mod-exp> :] <term> .

Reduce the given term in the given module, if <mod-exp> is given, otherwise in the current
module.

For breduce equations, possibly conditional, possibly behavioural, are taken into account
for reduction.

Related: reduce, execute

4.46 brl

4.47 brule

4.48 bsort

4.49 btrans [<label-exp>] <term> => <term> .

Defines a behaviour transition. For details see trans.

Related: bctrans, ctrans, trans

4.50. BTRNS 25

4.50 btrns

4.51 cbred

4.52 cd <dirname>

Change the current working directory, like the Unix counterpart. The argument is neces-
sary. No kind of expansion or substitution is done.

Related: ls, pwd

4.53 ceq [<op-exp>] <term> = <term> if <boolterm> .

Defines a conditional equation. Spaces around the if are obligatory. <boolterm> needs
to be a Boolean term. For other requirements see eq.

Related: bceq, beq, eq

4.54 check <options>

This command allows for checking of certain properties of modules and operators.

check regularity <mod_exp> Checks whether the module given by the module expres-
sion <mod_exp> is regular.

check compatibility <mod_exp> Checks whether term rewriting system of the mod-
ule given by the module expression <mod_exp> is compatible, i.e., every application
of every rewrite rule to every well-formed term results in a well-formed term. (This
is not necessarily the case in order-sorted rewriting!)

check laziness <op_name> Checks whether the given operator can be evaluated lazily.
If not <op_name> is given, all operators of the current module are checked.

Related: regularize

4.55 check <something> switch

These switches turn on automatic checking of certain properties:

check coherency TODO

check compatibility see the check command

26 CHAPTER 4. GORY DETAILS

check import TODO

check regularity see the check command

check sensible TODO

4.56 choose <selection>

Chooses a subterm by the given <selection>. See apply for details on <selection>.

Related: strat in operator attributes, start, apply

4.57 clause

(pignose)

4.58 clean memo

Resets (clears) the memo storages of the system. Memorized computations are forgotten.

Related: clean memo switch

4.59 clean memo switch

Possible values: on, off, default off.

tells the system to be forgetful.

4.60 close

This command closes a modification of a module started by open.

Related: open

4.61 comments

The interpreter accepts the following strings as start of a comment that extends to the
end of the line: --, -->, **, **>.

The difference in the variants with > is that the comment is displayed when run through
the interpreter.

Related: --, **

4.62. COND LIMIT SWITCH 27

4.62 cond limit switch

4.63 cont

4.64 ctrans [<label-exp>] <term> => <term> .

Defines a conditional transition. For details see trans and ceq.

Related: bctrans, btrans, trans

4.65 db

(pignose)

4.66 dbpred

(pignose)

4.67 demod

(pignose)

4.68 describe <something>

Similar to the show command but with more details. See describe ? for the possible set
of invocations.

Related: show

4.69 dirs

4.70 dpred

(pignose)

4.71 dribble

4.72 eof

Terminates reading of the current file. Allows for keeping untested code or documenta-
tions below the eof mark. Has to be on a line by itself without leading spaces.

28 CHAPTER 4. GORY DETAILS

4.73 eq [<op-exp>] <term> = <term> .

Declares an axiom, or equation.

Spaces around the = are necessary to separate the left from the right hand side. The
terms given must belong to the same connected component in the graph defined by the
sort ordering.

In simple words, the objects determined by the termsmust be interpretable as of the same
sort.

The optional part <op-exp> serves two purposes, one is to give an axiom an identifier,
and one is to modify its behaviour. The <op-exp> is of the form:

[<modifier> <label>] :

Warning: The square brackets here are not specifying optional components, but syntacti-
cal elements. Thus, a labeled axiom can look like:

eq[foobar] : foo = bar .

The <modifier> part is used to change the rewriting behaviour of the axiom. There are at
the moment two possible modifiers, namely :m-and and :m-or. Both make sense only for
operators where the arguments come from an associative sort. In this case both modifiers
create all possible permutations of the arguments and rewrite the original term to the
conjunction in case of :m-and or to the disjunction in case of :m-or of all the generated
terms.

Assume that NatSet is a sort with associative constructor modelling a set of natural num-
ber, and let

pred p1: Nat .
ops q1 q2 : NatSet -> Bool .
eq [:m-and]: q1(N1:Nat NS:NatSet) = p1(N1) .
eq [:m-or]: q2(N1:Nat NS:NatSet) = p1(N1) .

In this case an expression like q1(1 2 3) would reduce to p1(1) and p1(2) and p1(3)
(modulo AC), and q2(1 2 3) into the same term with or instead.

Related: bceq, beq, ceq

4.74 exec limit switch

Possible values: integers, default limit 4611686018427387903.

Controls the number of maximal transition steps.

Related: reduce

4.75. EXEC TRACE SWITCH 29

4.75 exec trace switch

Possible values: on off, defaultoff‘.

controls whether further output is provided during reductions.

Related: reduce

4.76 exec!

exec! [in :] .

4.77 execute [in <mod-exp> :] <term> .

Reduce the given term in the given module, if <mod-exp> is given, otherwise in the current
module.

For execute equations and transitions, possibly conditional, are taken into account for
reduction.

Related: reduce, breduce

4.78 extending (<modexp>)

Imports the object specified by modexp into the current module, allowing models to be
inflated, but not collapsing. See module expression for format of modexp.

Related: using, protecting, including

4.79 find

4.80 find all rules switch

4.81 flag

(pignose)

4.82 full reset

Reinitializes the internal state of the system. All supplied modules definitions are lost.

Related: reset

30 CHAPTER 4. GORY DETAILS

4.83 gendoc <pathname>

generates reference manual from system’s on line help documents, and save it to
pathname.

4.84 goal

(pignose)

4.85 imports { <import-decl> }

Block enclosing import of other modules (protecting etc). Other statements are not
allowed within the imports block. Optional structuring of the statements in a module.

Related: using, protecting, including, extending, axioms, signature

4.86 include BOOL switch

Possible values: on off, default on.

By default a couple of built-in modules are implicitly imported with protecting mode. In
particular, BOOL is of practical importance. It defines Boolean operators. It is imported
to admit conditional axioms.

This switch allows to disable automatic inclusion of BOOL.

4.87 include RWL switch

Possible values: on off, default off.

This switch allows to disable automatic inclusion of RWL.

4.88 including (<modexp>)

Imports the object specified by modexp into the current module.

See module expression for format of modexp.

Related: module expression, using, protecting, extending

4.89. INPUT <PATHNAME> 31

4.89 input <pathname>

Requests the system to read the file specified by the pathname. The file itself may contain
input commands. CafeOBJ reads the file up to the end, or until it encounters a line that
only contains (the literal) eof.

4.90 inspect

4.91 instantiation of parameterized modules

Parameterized modules allow for instantiation. The process of instantiation binds actual
parameters to formal parameters. The result of an instantiation is a newmodule, obtained
by replacing occurrences of parameter sorts and operators by their actual counterparts.
If, as a result of instantiation, a module is imported twice, it is assumed to be imported
once and shared throughout.

Instantiation is done by

<module_name> (<bindings>)

where <module_name> is the name of a parameterized module, and <bindings> is a
comma-separated list of binding constructs.

using declared views you may bind an already declared view to a parameter:

<parameter> <= <view_name>

If a module M has a parameter X :: T and a view V from T to M' is declared, V may
be bound to X, with the effect that

1. The sort and operator names of T that appear in the body of M are replaced
by those in M', in accordance with V,

2. The common submodules of M and M' are shared.

using ephemeral views In this case the view is declared and used at the same time.

<parameter> <= view to <mod_name> { <view_elements> }

See view for details concerning <view_elements>. The from parameter in the view
declaration is taken from <parameter>.

To make notation more succinct, parameters can be identified also by position instead of
names as in

<mod_name> (<view_name>, <view_name>)

32 CHAPTER 4. GORY DETAILS

which would bind the <view_name>s to the respective parameters of the parameterized
module <mod_name>.

This can be combined with the ephemeral defintion of a view like in the following example
(assume ILIST has two parameters):

module NAT-ILIST {
protecting (ILIST(SIMPLE-NAT { sort Elt -> Nat },

DATATYPE { sort Elt -> Data }))
}

4.92 let <identifier> = <term> .

Using let one can define aliases, or context variables. Bindings are local to the current
module. Variable defined with let can be used in various commands like reduce and
parse.

Although let defined variable behave very similar to syntactic shorthands, they are not.
The right hand side <term> needs to be a fully parsable expression.

4.93 lex

(pignose)

4.94 libpath switch

Possible values: list of strings.

The switch libpath contains a list of directories where CafeOBJ searches for include files.
Addition and removal of directories can be done with

set libpath + <path1>:<path2>:...
set libpath - <path1>:<path2>:...

or the full libpath reset by set libpath <path1>:<path2>:...

The current directory has a privileged status: It is always searched first and cannot be
suppressed.

4.95 lisp

Evaluates the following lisp expression.

4.96. LISPQ 33

Example

CafeOBJ> lisp (+ 4 5)
(+ 4 5) -> 9

4.96 lispq

Evaluates the following quoted lisp expression. (TODO ???)

4.97 list

(pignose)

4.98 look up <something>

TODO (memory-fault on sbcl)

4.99 ls <pathname>

lists the given pathname. Argument is obligatory.

Related: pwd, cd

4.100 make

4.101 match <term_spec> to <pattern> .

Matches the term denoted by <term_spec> to the pattern. <term_spec> is either top
or term for the term set by the start command; subterm for the term selected by the
choose command; it has the same meaning as subterm if choose was used, otherwise
the same meaning as top, or a normal term expression.

The given <pattern> is either rules, -rules, +rules, one of these three prefixed by all,
or a term. If one of the rules are given, all the rules where the left side (for +rules), the
right side (for -rules), or any side (for rules) matches. If the all (with separating space)
is given all rules in the current context, including those declared in built-in modules, are
inspected.

If a term is given, then the two terms are matched, and if successful, the matching substi-
tution is printed.

34 CHAPTER 4. GORY DETAILS

4.102 memo switch

controls the memorization of computations. The system memorizes evaluations of op-
erators declared with the memo operator attribute. Turning this switch off disables all
memorization.

4.103 [sys:]module[!|*] <modname> [(<params>)] [
<principal_sort_spec>] { mod_elements ... }

Defines a module, the basic building block of CafeOBJ. Possible elements are declarations
of

• import - see protecting, extending, including, using
• sorts - see sort declaration
• variable - see var
• equation - see op, eq, ceq, bop, beq, bceq
• transition - see trans, ctrans, btrans, bctrans

modname is an arbitrary string.

module* introduces a loose semantic based module.

module! introduces a strict semantic based module.

module introduces a module without specified semantic type.

If params are given, it is a parameterized module. See parameterized module for more
details.

If principal_sort_spec is given, it has to be of the form principal-sort <sortname>
(or p-sort <sortname>). The principal sort of themodule is specified, which allowsmore
concise views from single-sort modules as the sort mapping needs not be given.

4.104 module expression

In various syntax elements not only module names itself, but whole module expressions
can appear. A typical example is

open <mod_exp> .

which opens a module expression. The following constructs are supported:

module name using the name of a module

4.105. NAMES 35

renaming <mod_exp> * { <mappings> }

This expressions describes a newmodule where sort and/or operators are renamed.
<mappings> are like in the case of view a comma separated list of mappings of
either sorts (sort and hsort) or operators (op and bop). Source names may be
qualified, while target names are not, they are required to be new names. Renaming
is often used in combination with instantiantion.

summation <mod_exp> + <mod_exp>

This expression describes a module consisting of all the module elements of the
summands. If a submodule is imported more than once, it is assumed to be shared.

4.105 names

show

4.106 on-the-fly declarations

Variables and constants can be declared on-the-fly (or inline). If an equation contains a
qualified variable (see qualified term), i.e., <name>:<sort-name>, then from this point on
within the current equation only <name> is declared as a variable of sort <sort-name>.

It is allowed to redeclare a previously defined variable name via an on-the-fly declaration,
but as mentioned above, not via an explicit redeclaration.

Using a predeclared variable name within an equation first as is, that is as the predeclared
variable, and later on in the same equation with an on-the-fly declaration is forbidden.
That is, under the assumption that A has been declared beforehand, the following equation
is not valid:

eq foo(A, A:S) = A .

On-the-fly declaration of constants are done the same way, where the <name> is a constant
name as in ‘a:Nat. Using this construct is similar to defining an operator

op <name> : -> <sort>

or in the above example, op a : -> Nat ., besides that the on-the-fly declaration of
constants, like to one of variables, is only valid in the current context (i.e., term or axiom).
These constant definitions are quite common in proof scores.

Related: var

36 CHAPTER 4. GORY DETAILS

4.107 op <op-spec> : <sorts> -> <sort> { <attribute-list> }

Defines an operator by its domain, codomain, and the term construct. <sorts> is a space
separated list of sort names, <sort> is a single sort name. <op-spec> can be of the
following forms:

prefix-spec the <op-spec> does not contain a literal _: This defines a normal prefix op-
erator with domain <sorts> and codomain <sort>

Example: op f : S T -> U

mixfix-spec the <op-spec> contains exactely as many literal _ as there are sort names
in <sorts>: This defines an arbitrary mixfix (including postfix) operator where the
arguments are inserted into the positions designated by the underbars.

Example: op _+_ : S S -> S

For the description of <attribute-list> see the entry for operator attributes.

4.108 open <mod_exp> .

This command opens the module specified by the module expression <mod_exp> and
allows for declaration of new sorts, operators, etc.

Related: select, module expression, close

4.109 operator attributes

In the specification of an operator using the op (and related) keyword, attributes of the op-
erator can be specified. An <attribute-list> is a space-separate list of single attribute
definitions. Currently the following attributes are supported

associative specifies an associative operator, alias assoc

commutative specifies a commutative operator, alias comm

itempotence specifies an idempotent operator, alias idem

id: <const> specifies that an identity of the operator exists and that it is <const>

prec: <int> specifies the parsing precedence of the operator, an integer . Smaller prece-
dence values designate stronger binding. See operator precedence for details of the
predefined operator precedence values.

4.109. OPERATOR ATTRIBUTES 37

l-assoc and r-assoc specifies that the operator is left-associative or

right-associative

constr specifies that the operator is a constructor of the coarity sort. (not evaluated at
the moment)

strat: (<int-list>) specifies the evaluation strategy. Each integer in the list refers
to an argument of the operator, where 0 refers to the whole term, 1 for the first
argument, etc. Evaluation proceeds in order of the <int-list>. Example:

op if_then_else_fi : Bool Int Int -> Int { strat: (1 0) }

In this case the first argument (the boolean term) is tried to be evaluated, and de-
pending on that either the second or third. But if the first (boolean) argument
cannot be evaluated, no evaluation in the subterms will appear.

Using negative values allows for lazy evaluation of the corresponding arguments.

memo tells the system to remember the results of evaluations where the operator ap-
peared. See memo switch for details.

Remarks:

• Several operators of the same arity/coarity can be defined by using ops instead of
op:

ops f g : S -> S

For the case of mixfix operators the underbars have to be given and the expression
surrounded by parenthesis:

ops (_+_) (_*_) : S S -> S

• Spaces can be part of the operator name, thus an operator definition of op foo op
: S -> S is valid, but not advisable, as parsing needs hints.

• A single underbar cannot be an operator name.

Related: bop

38 CHAPTER 4. GORY DETAILS

4.110 operator precedence

CafeOBJ allows for complete freedom of syntax, in particular infix operators and overload-
ing. To correctly parse terms that are ambigous, all operators have precedence values.
These values can be adjusted manually during definition of the operator (see operator
attributes). In absence of manual specification of the operator precedence, the values are
determined by the following rules:

• standard prefix operators, i.e., those of the form op f : S1 .. Sk -> S, receive
operator precedence value 0.

• unary operators, i.e., those of the form op u_ : S1 -> S, receive precedence 15.
• mix-fix operators with forst and last token being arguments, i.e., those of the form

op _ arg-or-op _ : S1 .. Sk -> S, receive precedence 41.
• all other operators (constants, operators of the form a _ b, etc.) receive precedence

0.

Related: operator attributes

4.111 option

(pignose)

4.112 param

(pignose)

4.113 parameterized module

A module with a parameter list (see module) is a parameterized module. Parameters are
given as a comma (,) separated list. Each parameter is of the form [<import_mode>]
<param_name> :: <module_name> (spaces around :: are obligatory).

The parameter’s module gives minimal requirements on the module instantiation.

Within the module declaration sorts and operators of the parameter are qualified with
.<parameter_name> as seen in the example below.

Related: qualified sort

4.114. PARSE [IN <MOD-EXP> :] <TERM> . 39

Example

mod* C {
[A]
op add : A A -> A .

}
mod! TWICE(X :: C) {
op twice : A.X -> A.X .
eq twice(E:A.X) = add.X(E,E) .

}

4.114 parse [in <mod-exp> :] <term> .

Tries to parse the given term within the module specified by the module expression
<mod-exp>, or the current module if not given, and returns the parsed and qualified term.

In case of ambiguous terms, i.e., different possible parse trees, the command will prompt
for one of the trees.

Related: qualified term

4.115 parse normalize switch

4.116 popd

4.117 pred <op-spec> : <sorts>

Short hand for op <op-spec> : <sorts> -> Bool defining a predicate.

Related: bpred, op

4.118 prelude

4.119 print depth switch

Possible values: natural numbers, default unlimited.

Controls to which depth terms are printed.

4.120 print mode switch

Possible values: normal fancy tree s-expr

Selects one of the print modes.

40 CHAPTER 4. GORY DETAILS

4.121 print trs switch

Possible values: on off, default off

If set to on, print the rules used during reduction of =(_,_)=>+_if_suchThat_{_}.

Related: search predicates

4.122 protect <module-name>

Protect a module from being overwritten. Some modules vital for the system are initially
protected. Can be reversed with unprotect.

Related: unprotect

4.123 protecting (<modexp>)

Imports the object specified by modexp into the current module, preserving all intended
models as they are. See module expression for format of modexp.

Related: including, using, extending

4.124 provide <feature>

Discharges a feature requirement: once provided, all the subsequent requirements of
a feature are assumed to have been fulfilled already.

Related: require

4.125 pushd

4.126 pvar

(pignose)

4.127 pwd

Prints the current working directory.

Related: ls, cd

4.128. QUALIFIED SORT/OPERATOR/PARAMETER 41

4.128 qualified sort/operator/parameter

CafeOBJ allows for using the same name for different sorts, operators, and parameters.
One example is declaring the same sort in different modules. In case it is necessary to
qualify the sort, operator, or parameter, the intended module name can be affixed after a
literal .: <name>.<modname>

Example: In case the same sort Nat is declared in both the module SIMPLE-NAT and PANAT,
one can use Nat.SIMPLE-NAT to reference the sort from the former module.

Furthermore, a similar case can arise when operators of the same name have been declared
with different number of arguments. During operator renaming (see view) the need for
qualification of the number of parameters might arise. In this case the number can be
specified after an affixed /: <opname>/<argnr>

Related: qualified term, parameterized module

4.129 qualified term

In case that a term can be parsed into different sort, it is possible to qualify the term to
one of the possible sorts by affixing it with : <sort-name> (spaces before and after the
: are optional).

Related: parse

Example

1:NzNat 2:Nat

4.130 quiet switch

Possible values: on off, default off

If set to on, the system only issues error messages.

Related: verbose

4.131 quit

Leaves the CafeOBJ interpreter.

42 CHAPTER 4. GORY DETAILS

4.132 reduce [in <mod-exp> :] <term> .

Reduce the given term in the given module, if <mod-exp> is given, otherwise in the current
module.

For reduce only equations and conditional equations are taken into account for reduction.

Related: breduce, execute

4.133 reduce conditions switch

Possible values: on off, default off.

When using apply to step through a reduction, this switch allows to turn on automatic
reduction of conditions in conditional equations.

Related: apply

4.134 regularize <mod-name>

Regularizes the signature of the given module, ensuring that every term has exactely one
minimal parse tree. In this process additional sorts are generated to ensure unique least
sort of all terms.

Modules can be automatically regularized by the interpreter if the regularize
signature switch is turn to on.

4.135 regularize signature switch

See ‘regularize

4.136 require <feature> [<pathname>]

Requires a feature, which usually denotes a set of module definitions. Given this com-
mand, the system searches for a file named the feature, and read the file if found. If a
pathname is given, the system searches for a file named the pathname instead.

Related: provide

4.137 reset

Restores the definitions of built-in modules and preludes, but does not affect other mod-
ules.

4.138. RESOLVE 43

Related: full reset

4.138 resolve

(pignose)

4.139 restore <pathname>

Restores module definitions from the designated file pathnamewhich has been saved with
the save command. input can also be used but the effects might be different.

TODO – should we keep the different effects? What is the real difference?

Related: save-system, save, input

4.140 rewrite limit switch

Possible values: positive integers, default not specified.

Allows limiting the number of rewrite steps during a stepwise execution.

Related: step switch

4.141 rl

4.142 rule

4.143 save <pathname>

Saves module definitions into the designated file pathname. File names should be suffixed
with .bin.

save also saves the contents of prelude files as well as module definitions given in the
current session.

Related: save-system, restore, input

4.144 save-option

(pignose)

44 CHAPTER 4. GORY DETAILS

4.145 save-system <pathname>

Dumps the image of the whole system into a file. This is functionality provided by the
underlying Common Lisp system and might carry some restrictons.

Related: restore, save, input

4.146 scase

4.147 search predicates

CafeOBJ provides a whole set of search predicates, that searches the reachable states
starting from a given state, optionally checking additional conditions. All of them based
on the following three basic ones:

• S =(n,m)=>* SS [if Pred] search states reachable by 0 or more transitions;
• S =(n,m)=>+ SS [if Pred] search states reachable by 1 or more transitions;
• S =(n,m)=>! SS [if Pred] search states reachable by 0 or more transitions, and

require that the reached state is a final state, i.e., no further transitions can be
applied.

To allow for conditional transitions, a transition is only considered in the search if Pred
holds.

The parameters n and m in these search predicates:

• n, a natural number of *, gives the maximal number of solutions to be searched. If
* is given all solutions are searched exhaustively.

• m, a natural number but not *, gives the maximal depth up to which search is per-
formed.

The predicates return true if there is a (chain of) transitions that fits the parameters (n,m,
and *, +, !) and connects S with SS.

There are two orthogonal extension to this search perdicate, one adds a suchThat clause,
one adds a withStateEq clause.

S =(n,m)=>* SS [if Pred1] suchThat Pred2 (and similar for ! and +) In this case
not only the existence, of a transition sequence is tested, but also whether the pred-
icate Pred2, which normally takes S and SS as arguments, holds.

4.148. SELECT <MOD_EXP> . 45

S =(n,m)=>* SS [if Pred1] withStateEq Pred2 (and similar for ! and +) TODO

These two cases can also be combined into

S =(n,m)=>* SS [if Pred1] suchThat Pred2 withStateEq Pred3

4.148 select <mod_exp> .

Selects a module given by the module expression <mod_exp> as the current module. All
further operations are carried out within the given module. In constrast to open this does
not allow for modification of the module, e.g., addition of new sorts etc.

Related: module expression, open

4.149 set <name> [option] <value>

Depending on the type of the switch, options and value specification varies. Possible value
types for switches are boolean (on, off), string ("value"), integers (5434443), lists (lisp
syntax).

For a list of all available switches, use set ?. To see the current values, use show
switches. To single out two general purpose switches, verbose and quiet tell the
system to behave in the respective way.

Related: switches, show

4.150 show <something>

The show command provides various ways to inspect all kind of objects of the CafeOBJ
language. For a full list call show ?.

Some of the more important (but far from complete list) ways to call the show command
are:

• show [<modexp>] - describes the current modules of the one specified as argu-
ment

• show switches - lists all possible switches
• show <term> - displays a term, posible in tree format

See the entry for switches for a full list.

Related: describe, switches

46 CHAPTER 4. GORY DETAILS

4.151 show mode switch

Possible values for set show mode <mode> are cafeobj and meta.

TODO no further information on what this changes

4.152 sigmatch

(pignose)

4.153 signature { <sig-decl> }

Block enclosing declarations of sorts and operators. Other statements are not allowed
within the signature block. Optional structuring of the statements in a module.

Related: op, sort, imports, axioms

4.154 sort declaration

CafeOBJ supports two kind of sorts, visible and hidden sorts. Visible sorts are introduced
between [and], while hidden sorts are introduced between *[and]*.

[Nat]
[Obs]

Several sorts can be declared at the same time, as in [Nat Int].

Since CafeOBJ is based on order sorting, sorts can form a partial order. Definition of the
partial order can be interleaved by giving

[<sorts> < <sorts>]

Where sorts is a list of sort names. This declaration defines an inclusion relation between
each pair or left and right sorts.

Example

[A B , C D < A < E, B < D]

defines five sorts A,…,E, with the following relations: C < A, D < A, A < E, B < D.

4.155. SOS 47

4.155 sos

(pignose)

4.156 start <term> .

Sets the focus onto the given term <term> of the currently opened module or context.
Commands like apply, choose, or match will then operate on this term.

Related: match, choose, apply

4.157 statistics switch

Possible values: on off, default on.

After each reduction details about the reduction are shown. Information shown are the
time for parsing the expression, the number of rewrites and run time during rewriting,
and the number of total matches performed during the reduce.

4.158 step switch

Possible values: on off, default off.

With this switch turned on, rewriting proceeds in steps and prompts the user interactively.
At each prompt the following commands can be given to the stepper (with our without
leading colon :):

help (h, ?) print out help page
next (n) go one step
continue (c) continue rewriting without stepping
quit (q) leave stepper continuing rewrite
abort (a) abort rewriting
rule (r) print out current rewrite rule
subst (s) print out substitution
limit (l) print out rewrite limit count
pattern (p) print out stop pattern
stop [<term>] . set (or unset) stop pattern
rwt [<number>] . set (or unset) max number of rewrite

Other standard CafeOBJ commands that can be used are show, describe, set, cd, ls, pwd,
lisp, lispq, and (on Unix only) !.

48 CHAPTER 4. GORY DETAILS

4.159 stop

4.160 stop pattern switch

This command causes reductions to stop when the reductants get to containing subterms
that match the given term. If no term is given, this restriction is lifted.

TODO does not work as far as I see – shouldn’t the following code fragment stop at the
occurrence of (s 2), before rewriting it to the final 3?

CafeOBJ> open NAT .

-- opening module NAT.. done.

%NAT> set stop pattern (s 2) .

%NAT> red (s (s (s 0))) .
-- reduce in %NAT : (s (s (s 0))):NzNat
(3):NzNat
(0.000 sec for parse, 3 rewrites(0.000 sec), 3 matches)

%NAT>

Related: step switch

4.161 switches

Switches control various aspects of the computations and behaviour of CafeOBJ. The cur-
rent list of switches and their values can be shown with

show switches

The single switches are described separately in this manual.

Related: show, set

4.162 trace [whole] switch

During evaluation, it is sometimes desirable to see the rewrite sequences, not just the
results. Setting the switch trace whole will result in the resultant term of each rewrite
step being printed. Setting the switch trace will result in the display of which rule, sub-
stitution, and replacement are used.

4.163. TRANS [<LABEL-EXP>] <TERM> => <TERM> . 49

4.163 trans [<label-exp>] <term> => <term> .

Defines a transition, which is like an equation but without symmetry.

See eq for specification of requirements on <label-exp> and the terms.

Transitions and equations server similar, but different purpose. In particular, reductions
(both with or without behavior axioms used) do not take transitions into account. Only
exec also uses transitions. On the other hand, the built-in search predicate searches all
possible transitions from a given term.

4.164 trns

4.165 unprotect <module-name>

Remove overwrite protection from a module that has been protected with the protect
call. Some modules vital for the system are initially protected.

Related: protect

4.166 using (<modexp>)

Imports the object specified by modexp into the current module without any restrictions
on the models. See module expression for format of modexp.

Related: protecting, including, extending

4.167 var <var-name> : <sort-name>

Declares a variable <var-name> to be of sort <sort-name>. The scope of the variable is
the current module. Redeclarations of variable names are not allowed. Several variable of
the same sort can be declared at the same time using the vars construct:

vars <var-name> ... : <sort-name>

Related: on-the-fly, qualified term, op

4.168 verbose switch

Possible values: on off, default off.

If turn on, the system is much more verbose in many commands.

Related: quiet switch

50 CHAPTER 4. GORY DETAILS

4.169 version

Prints out the version of CafeOBJ.

4.170 view <name> from <modname> to <modname> { <viewelems>
}

A view specifies ways to bind actual parameters to formal parameters (see parameterized
module). The view has to specify the mapping of the sorts as well as the operators.

The <viewelems> is a comma-separated list of expressions specifying these mappings:

sort <sortname> -> <sortname>
hsort <sortname> -> <sortname>
op <opname> -> <opname>
bop <opname> -> <opname>

and also can contain variable declarations.

Infix operators are represented as terms containing the operator with either literal under-
scores _, or variables: _*_ or X * Y. The <opname> can be qualified.

In specifying views some rules can be omitted:

1. If the source and target modules have common submodules, all the sorts and mod-
ules decalred therein are assumed to be mapped to themselves;

2. If the source and target modules have sorts and/or operators with identical names,
they are mapped to their respective counterparts;

3. If the source module has a single sort and the target has a principal sort, the single
sort is mapped to the principal sort.

Example

Assume a module MONOID with sort M and ops e and * are given, and another SIMPLE-NAT
with sort Nat and operators 0 and + (with the same arity). Then the following expression
constitutes a view:

view NAT-AS-MONOID from MONOID to SIMPLE-NAT {
sort M -> Nat,
op e -> 0,
op _*_ -> _+_

}

Bibliography

[1] Sh. Iida, J. Meseguer, and K. Ogata, eds. Specification, Algebra, and Software - Es-
says Dedicated to Kokichi Futatsugi. Vol. 8373. LNCS. Springer, 2014. isbn: 978-3-
642-54623-5.

[2] Norbert Preining. CafeOBJ. http://www.preining.info/blog/cafeobj/.

http://www.preining.info/blog/cafeobj/

	Contents
	Introduction
	Overview of the system
	CloudSync
	Gory Details
	Bibliography

